Empirical Assurance of Embedded Software
Using Realistic Simulated Failure Modes

Phase
Final Report

for the

NASA Office of Safety and Mission Assurance
Software Assurance Research Program

Center I nitiative 2004-77

Ted Bennett, Principal Investigator ~ Paul Wennber g, Co-Investigator Ken Chen, Co-Investigator

Triakis Corporation Triakis Corporation Johnson Space Center
Ted.Bennett(at) Triakis.com Paul.Wennberg(at) Triakis.com Safety & Mission Assurance
ken.k.chen(at)nasa.gov

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
DUNS: 097865211 rev. a December 2006

Table of Contents

O I L I O 1 10 1 1 0] N S 4
2.0 BACKGROUND. ...ttt e e et e e et et e et st s e s e st e e e e s et s ea s e e e s s et ebeanenesbanes 5
21 Failure Modes & EffeCtS ANAIYSIS........oo ittt sn e e e e 5
2.2 DEfECt AN HAZAI O DELECTION.euveee e eeeeeeee et e ettt e et e e e e et e e s seeeeteeesss e seeeesaeestseensenrensenaenneen 5
O I I (O] 10] I 1 2 5
3.1 Enhanced Failur€ MOOEIING.ooo ettt e e e e e e 7
A e TH LU =AY/ o L= - T o U 8
O Y I S TP 8
O o] 1= o Y= OSSP 8
@ o] <o Y= = PP 10
4.2.1 Project-1evel TESE ENVII ONMENTS......iciiiiiieieeieeie et seesteesteesteesteesteesteesteesteesteesseesseessessseessesssnsssnssnsnnes 10
4,22V SIL ENVITONIMENT. ...ttt ettt e e e e e e et e et e e e e s e e b e e eeeaeessaeasaaeeeeessssssssseaesssassssassssassssassasnesessesesenssesnnnns 10
423 FallUr@MOOE TESE RESUILS........eeeieiieee ettt e e e ettt e e e s s et b e e e e s e e seaaaseeeasssssssbanesessssasssesensnns 11
A R N == | QY T TSR I = SRR 11
R IS (U o S I gV V1= A g I == T 12
4.2.3.31S01aLi0N VAlIVE TESES ... eeeeeiiee ettt et e e e e e e e e e e e e e s e et eeeeessesessseseeessssessbaaneeaseseesensssnneenes 15
423 AMEMSREAIE GYIO TOIS ..ottt ie ettt ettt et e e et b e e e s bt e e e s aabe e e s anseeeeanneeeansnneeeebanaaaaes 15

e @ o] 1= o Y= SR 20
D TR o1 [o] P 25
LSO I 1Y/ T (O N I 1\ 1 26
B.0 FUTURE WORK ittt ettt e e e e et e et e et e e e e e s e e s s e s et e eb e e e b e ea s e ebssaaneabanees 26
7.0 ACKINOW LE D GMEN T S ettt e et e et ettt e et e et e sa e s s s s e ea e et ansaaaneeneean 27
LB O I = = o A (O 27

Table of Tables

TABLE 1: FAILURE MODES IMPLEMENTED.ottt e et e e e e e e e aaaas 8
TABLE 2: SW PATH COVERAGE REPORT EXCER P T ...t e 21
TABLE 3: SW SUBROUTINE CALL & INTERRUPT REPORT EXCERPT....co i 22

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 2 rev.a December 2006

TRIAKIS CORPORATION

A
i "4 TRIAKIS CORPORATION
il @

Table of Figures

FIGURE 1: LEAKY GAS TEST POSITION PLOT - PROFILE #1......coooiiiiiiiii e 11
FIGURE 2: LEAKY GAS TEST ATTITUDE PLOT - PROFILE #L. ..o 11
FIGURE 3: MAC THRUSTER CONFIGURATION.....ccutttiiiiiiiiiiiii et 12
FIGURE 4: STUCK THRUSTER TEST POSITION PLOT - PROFILE #3......oiiiiiiiiiiii e 13
FIGURE 5: STUCK THRUSTER TEST ATTITUDE PLOT - PROFILE#3......oooiiiiiii e 13
FIGURE 6: STUCK THRUSTERS 4 & 5 TEST ATTITUDE PLOT - PROFILE #3........ccoiiiiiiin 14
FIGURE 7: RATE GYRO OFFSET & GAIN FAULTS TEST POSITION PLOT - PROFILE #3................ 15
FIGURE 8: RATE GYRO OFFSET & GAIN FAULTS TEST ATTITUDE PLOT - PROFILE #3................ 16
FIGURE 9: RG ROLL AXIS OFFSET & GAIN FAULTS TEST ATTITUDE PLOT - PROFILE #3............ 16
FIGURE 10: RATE GYRO TOTAL FAILURE TEST POSITION PLOT - PROFILE #3......coiiiiiiiiiiienns 17
FIGURE 11: RATE GYRO TOTAL FAILURE TEST ATTITUDE PLOT - PROFILE #3........coiiiiiiiiiiiinns 17
FIGURE 12: RATE GYRO TOTAL FAILURE TEST POSITION PLOT - PROFILE #4.......ccoooiiiiiiiiinn. 18
FIGURE 13: RATE GYRO TOTAL FAILURE TEST ATTITUDE PLOT - PROFILE #4........cccoooviiiiiiiinnns 18

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 3 rev.a December 2006

TRIAKIS CORPORATION

Abstract

Reliance on analysis alone to evaluate the effect of failure modes untestable in an integration lab setup will not
fully ameliorate the added risks due to ever-increasing system complexities and the use of intelligent behavior in
software designs. Few would argue that evaluating system behavior through dynamic testing in its native target
environment is the best method of verification, however, thisis almost always infeasible for NASA space hardware.
In this study we simulated the NASA Mini-AERCam nanosatellite, running its uninstrumented flight software, in its
orbital environment. We then demonstrated how a high-fidelity virtual environment smulation can be used for
empirical assessment of system and software behavior in response to enhanced system and component failure
conditions. Failure-mode testing of the Mini-AERCam controlled by its flight software revealed dynamics and
behaviors not discovered in prior failure modes and effects analysis efforts. These results suggest improved
mitigation strategies for recovery of the Mini-AERCam experiencing such a failure, and design modifications with
the potential for improving controllability in the presence of such a failure.

1.0 INTRODUCTION

Failure Modes and Effects Analysis (FMEA) is a primary tool used by NASA Safety & Mission Assurance (SMA)
teams to evaluate the behavior of complex systems in response to operational failures, and to develop operational
strategies for mitigating the risk of undesirable consequences of failure conditions.

This document has been developed in support of a Center Initiative research project funded by the NASA Software
Assurance Research Program (SARP) beginning in fiscal year 2004. We have created a virtua system integration
laboratory (VSIL) smulation of the Johnson Space Center Mini-AERCam (MAC) nanosatdlite from project
documentation to explore the concept of failure mode effects (FME) testing.

The Mini-AERCam VSIL supports execution and test of the flight software without the need for externa test
equipment or other hardware. As such, it provides an ideal tool for software quality assurance (SQA) groups to
improve their effectiveness by conducting software testing rather than relying exclusvely on anaysis tools and
process monitoring. This domain has historically been inaccessible to them due to the high cost of procuring their
own system integration lab (SIL), and limited availability of project-level SILsfor their use.

With the opening of the flight software (FSW) testing domain to SQA teams using a VSIL, some of the unique
capabilities of thisvirtual environment may be applied to ease, complement, or supplant laborious analysis activities
like failure modes & effects analysis (FMEA). Failure modes may be modeled as intrinsic characteristics of parts
within the virtual environment that can be manifested as desired during the execution of test scenarios. We refer to
these as “enhanced” failure modes because they are generally difficult or cost-prohibitive to produce in a hardware
SIL, but readily achievablein avirtua environment simulator.

Invoking failuresin smulated parts during test most closely mimics how the FSW would encounter such an event in
an operational setting. Observing/measuring the behavior of the FSW and system in response to a failure condition
isthe surest way to verify conformance to arequirement. Thisahility confers less need for reliance on analysis, and
more flexibility and realism in the eval uation of the effects of failure modes. For this effort, our selection of failure
modes was drawn from the list of those analyzed as part of the Safety and Mission Assurance (SMA) team's Mini-
AERCam FMEA activity. Despite advances in analysis methodologies, reliance on analysis aone to evaluate the
effect of failure modes untestable in an integration lab setup will not fully ameliorate the risk added due to increased
complexity. Supplementing analysis with empirical verification of the system’s response to anomalous conditions
(initiated by ionizing radiation, component failures, system failures, et al) may be the best approach to redlizing a
high level of assurance for this project.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 4 rev.a December 2006

TRIAKIS CORPORATION

The research effort described in this report was conducted under a grant from the NASA Office of Safety and
Mission Assurance — Software Assurance Research Program. Co-Investigator Paul Wennberg developed the
simulation tool used in thisinvegtigation.

2.0 BACKGROUND

2.1 Failure Modes & Effects Analysis

Failure Modes & Effects Analysis has a long, successful history dating back to the deve opment of United States
Military Procedure MIL-P-1629, a few years following the end of World War Il. The first major NASA use of
FMEA was on the Apollo program in the early 1960s and following publication by several professional societies of
formal procedures for its use, FMEA began to see wide-spread adoption throughout the commercia sector in the
1970s.

FMEA was originaly developed to help improve the rdiability of hardware systems and soon evolved to
incorporate prioritization of failure modes according to criticality (FMECA). With the increasing reliance on
computers to control hardware systems, it became apparent that this technique could be advantageoudy applied to
theanalysis of the effects of software failure modes (SFMEA). Haapanen & Helminen provide arecent overview of
FMEA application to software systems in their 2002 paper for the Finnish Radiation and Nuclear Safety Authority

[1].
2.2 Defect and Hazard Detection

New complex embedded systems are quick to take advantage of the unrelenting pace of advancement in computer
hardware performance and capacity. This increase in hardware capability comes with a considerably greater
increase in the functionaity and complexity of the software in control. The devel opment of methods and tools used
to create, verify, and validate controlling software have been hard pressed to keep up with the unremitting advances.

This software complexity growth produces an exponential increase in the software state space. Asaresult, we have
long since passed the point where the total software state space can be economically verified, and rely on methods of
prioritizing states and failure modes to investigate according to criticality, probability, and risk. One of the
promising methodol ogies devel oped at JPL by Feather et a is called Defect Detection and Prevention (DDP).

DDP is a tool that helps guide the decision-making process early in the development process. In the words of
Feather et al., “This is an important but challenging time of the life cycle. It is important because these early
decisions have the most leverage to influence the development to follow. It is challenging because information on
which to base those decisions is incomplete and uncertain, and in the case of advanced technologies and systems
there is little past experience from which to extrapolate” [2]. Establishing the correctness of the system design early
in a project not only improves software, safety, and mission assurance, but also can have a substantial impact on
devel opment and life-cycle costs (see: Cost of Defect Propagation).

Use of atool such as DDP early in a project can be a highly effective means of establishing a prioritized list of
failure modes to be manifested for testing a system's response in support of an FMEA exercise. Testing the system
inaVSIL produces data that informs the development of mitigation strategiesto deal with operational failures.

3.0 METHODOLOGY

Our research was dependent upon the use of a simulation of the MAC in its orbital environment with sufficient
fidelity to run the FSW object code, with part models closely mirroring those of MAC and having failure modes that
may be invoked under test control. Since no simulator with these capabilities existed, amajor part of our effort was
spent developing one using Triakis IcoSim ssimulator application. Experience has shown that the most efficient

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 5 rev.a December 2006

TRIAKIS CORPORATION

method of creating an embedded system simulation capable of running the executable software object is to first
develop one based on a pseudo-processor running the source code (if available), compiled at the time the simulator
is built. This has proven an effective way to develop and verify the simulator to a reasonable degree of confidence
for several reasons:

1. The software has been designed to run on the target hardware and as such, it contains all of the information
required to model the software/hardware interface (e. g. registers, timers, interrupts, memory map, etc.).

2. Compiling the source code along with the simulator allows the use of standard software development tools
like source-level debugging, that facilitate the investigation of simulator problems due to incompatibility
with the software.

3. Working with the source code promotes a good understanding of the software and system design.

Cost of Defect Propagation

Estimates of the cost to find and correct software faults at each of the principal stages of a project have been
publicized and widely referenced since 1976 when Boehm first published his study [3] on the subject. Cost
numbers vary depending on the type of application for which the software is being developed but the common
thread they all exhibit is the substantial increase in project costs caused by carrying problems from one
development stage to the next.

A report released in May 2002 by the National Institute of Standards & Technology (NIST) [4] contains a
thorough analysis concluding that inadequate software testing costs the United States an estimated $59.5 billion
annually. The 309-page NIST report is a well-considered treatise on the economic impact of inadequate software
testing.

While these numbers are extrapolated from software developed for the financial services and transportation
applications (CAD, CAM, etc.) sectors, the message applies even more significantly to industries engaged in
developing software for safety and mission critical applications such as aerospace, medical, defense, automotive,
etc. Failures of safety/mission-critical software may result in harm to, or loss of human life and/or mission
objectives such as in the case of the Therac-25 radiation overdose accidents [5] and the Ariane-5 maiden launch
failure [6]. The Therac-25 software caused severe radiation burns in numerous cancer patients before it was
implicated. The cost of allowing the Ariane-5 software defect to pass into the operational phase has been
estimated to be as high as $5 billion alone.

NASA recently sponsored a study to evaluate the
economic benefit of conducting Independent Validation
& Verification (IV&V) during the development of 400 Relative
safety-critical embedded systems [7]. This study Cost to
presented cost-to-repair figures focused specifically on
embedded systems projects. The chart at the right
shows the relative cost to repair factors — considered to
be conservative estimates for embedded systems — used
in this study.

This graph tells us that an error introduced in the
requirements phase will cost five times more to correct
in the design phase than in the phase in which it was

Operational
Integration
Test

introduced. Correspondingly, it will cost ten times De:’:: ;égf’
more to repair in the code phase, 50 times more in the £ = Rqmts Qg?
test phase, 130 times more in the integration phase, and g ? S 4 c &
368 times more when repaired during the operational PhasDD °© F é’ dé"
phase. The graph also gives the cost multipliers for = efect Introduceq —
problems introduced in the design, code, test, and
integration phases of the development cycle.
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834

CAGE Code: 1XRC3 6 rev. a December 2006

|

Having developed the MAC simulator, we then extended it to include a shuttle orbiter virtual environment (VE)
simulation within which the virtual Mini-AERCam operates during software testing. This VE includes GPS
satellites, the shuttle orbiting the Earth orbiting the Sun, orbital dynamics, inertial effects, etc. We then added
failure modes to sdlected parts, and devel oped tests based on selected failure modes analyzed in the MAC FMEA
document.

3.1 Enhanced Failure Modeling

We define “Enhanced Failures” as those that are generally difficult or cost prohibitive to produce in a realistic
manner, in a system integration laboratory facility — but are readily created in a virtual system integration laboratory
(VSIL) environment simulator. The following types of verification are typically very difficult to reditically
evaluate in aphysical laboratory environment, but relatively easy in ahigh-fidelity virtua environment:

1. Verifying the response of controlling software to the effects of single or burst event ionizing radiation on
one or more hardware components (e.g. FPGA, RAM, CPU internal bit/state changes, latch-up, €tc.).

2. Verifying the software response to single or combined hardware component failures/degradations during
critical software task execution (e.g. FPGA internal failures, D/A & A/D bit failures, telemetry & control
link noise interference or component failures, sensor failures, propulsion system component failures, 10ss
of inertial reference axis, €tc.).

3. Verifying the software response to single or multiple system-level component failures, degradations, or
unexpected behaviors during critical software task execution (e.g. loss/degradation of singlemultiple
GPS satellite signal(s), lass of command link during manual contral, etc.).

The failures we mode ed in the MAC were of the type identified in item 2 above, and selected among the failures
analyzed in the MAC FMEA report (filename: “FMEA Mini AERCam Demonstrator.doc”). We selected the
following failure mode categories to implement for our project:

Internal propulsion leak venting through seam in Mini-AERCam case
Thruster stuck open or closed

MEMS rategyro total failure

MEMS rategyro axisgain & bias offset failure

Isolation valve unresponsive

growdNE

In the VSIL simulator, we implemented failure modes at the part level as functions within the part that may be called
under test control to alter part behavior (e.g. manifest failures) when desired. Parameters are typically passed to the
function to control activation/deactivation of the failure, to sdect different characteristics of the failure, to control
the severity of degraded mode failures, etc. For example the following 'C++' function within the MEMS rate gyro
part is used to manifest rate gyro failures:

void MEMS: : Set Fai | ureMbde(i nt axis, double offset, double gain)
{

error[axis].offset
error[axis].gain

of fset;
gai n;

if((gain == 0) && (offset == 0)) // This forces the MEMS to be unresponsive
MEMS_| NOP = TRUE;
}

Thisis the code that implements the gain and offset bias errors for the rate gyro Rall Axis (the value of parameter
'ffratef ROLL]" is driven by the simulator inertial model):

rg[ROLL].rate = ffrate[ROLL] * error[ROLL].gain + error[ROLL]. of f set;

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 7 rev.a December 2006

|

When the MEMS _INOP flag is set, the rate gyro outputs to the FPGA that reads its values are disabled. The
complementary function, “MEMS::ClearFailureModes(),” is called to reset the gain bias to 1 and offset bias to 0 for
all axis, and to reset the MEMS_INOP flag to FALSE, thereby restoring nominal operation to the rate gyro.

Similarly, “SetFailureMode()” functions have been programmed into the parts that implement the behavior of the
thrusters, and the isolation valve.

3.2 Failure Mode Testing

Our selection of failure modes to test was based on the failure modes that were evaluated in the MAC FMEA report
produced by the Johnson Space Center SMA team in 2002 (filename: “FMEA Mini AERCam Demonstrator. DOC”).
Of those evaluated in the FMEA report, we chose failure modes whose analysis had been conducted at a high
abstraction level, that we felt might produce interesting results through evaluation in more detail. For example,
there are 12 micro thrusters on the MAC that are independently controlled by the FSW. The FMEA andyss
assesses them as each thruster within the group controlling the axis having the same effect. We fdt that testing
individual thruster failures might allow a better assessment of MAC behavior than the anaysis could provide.

Failure mode testing is initiated from a program that is executed when the MAC simulator starts. To maintain
consistency, we ran each test sequence independently beginning after the MAC initia conditions were set up during
simulator start-up. Each test begins by commanding the MAC to move from its starting position, to a destination
waypoint and attitude, through the use of the MAC auto-move function. Fallure modes are manifested while the
MAC attempts to fly the commanded profile, and position and attitude data are logged to a file at one second
intervals. To establish abasis for comparison, each test profile is repeated without manifesting failure modes so that
data from anominal MAC flight may be collected.

4.0 RESULTS

Meeting our objectives required that we first develop a MAC VSIL simulator capable of running the unmodified
executable MAC FSW object code. Asthe development of the ssimulator is not the focus of this effort, discussion of
the details of this aspect of our effort will not be included herein. The authors, however, will be pleased to discuss
this subject in some detail with those interested.

Having developed a VSIL simulator of the MAC, we employed it to address our following three primary objectives:

A) To be able to independently test (rather than rely solely on FMEA) software behavior in response to failure
modes.

B) Tocreate & test failure mode scenarios in the virtual environment that are not practical in aHW integration
test lab .

C) Toevauateif project SQA can be more effective by complementing FMEA with flight SW testing.

The results of our effort are presented in the following paragraphs, ordered by objective. Access to the VSIL,
documentation, and data produced during this project effort may be obtained with permission from the NASA V&V
Facility. Tests and test results are documented in the Flight Software Test Document for the JISC Mini-AERCam
Nanosatellite (SARP-CI04-77-001b).

4.1 Objective A
To be able to independently test (rather than rely solely on FMEA) software behavior in response to failure modes.
Having developed the MAC VSIL smulator, the next step was to program the MAC components involved, with

faillure modes we selected based on the FMEA report. Table 1 lists the failure modes we implemented in the
simulated MAC. The Reference (Ref #), Failure Mode (FM #), and Page Number (Page #) columns are provided as

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 8 rev.a December 2006

. 7
i ’.{/\\ D

d TRIAKIS CORPORATION
| @

cross references into the FMEA report to help corrdate the listed failure mode tests with those failure modes

analyzed.
Table 1: Failure Modes Implemented
Test | Ref# | FM # | Page# Failure Mode Description
1. | 00010 | 00010 1 | External Leakage (Propellant lesk causing thrust)
2. | 00001 | 00080 | 17 |Stuck thruster: Thruster 1 fails OPEN
3. | 00001 | 00080 | 17 |Stuckthruster: Thruster 1 fails CLOSED
4. | 00001 | 00080 | 17 | Stuck thruster: Thruster 2 fails OPEN
5. | 00001 | 00080 | 17 |Stuckthruster: Thruster 2 fails CLOSED
6. | 00001 | 00080 | 17 |Stuck thruster: Thruster 3 fails OPEN
7. | 00001 | 00080 | 17 |Stuckthruster: Thruster 3 fails CLOSED
8. | 00001 | 00080 | 17 |Stuck thruster: Thruster 4 fails OPEN
9. | 00001 | 00080 | 17 |Stuckthruster: Thruster 4 fails CLOSED
10. | 00001 | 00080 | 17 |Stuck thruster: Thruster 5 fails OPEN
11. | 00001 | 00080 | 17 |Stuck thruster: Thruster 5 fails CLOSED
12. | 00001 | 00080 | 17 |Stuck thruster: Thruster 6 fails OPEN
13. | 00001 | 00080 | 17 |Stuck thruster: Thruster 6 fails CLOSED
14. | 00001 | 00080 | 17 |Stuck thruster: Thruster 7 fails OPEN
15. | 00001 | 00080 | 17 |Stuck thruster: Thruster 7 fails CLOSED
16. | 00001 | 00080 | 17 |Stuck thruster: Thruster 8 fails OPEN
17. | 00001 | 00080 | 17 |Stuck thruster: Thruster 8 fails CLOSED
18. | 00001 | 00080 | 17 | Stuck thruster: Thruster 9 fails OPEN
19. | 00001 | 00080 | 17 |Stuck thruster: Thruster 9 fails CLOSED
20. | 00001 | 00080 | 17 | Stuck thruster: Thruster 10 fails OPEN
21. | 00001 | 00080 | 17 | Stuck thruster: Thruster 10 fails CLOSED
22. | 00001 | 00080 | 17 | Stuck thruster: Thruster 11 fails OPEN
23. | 00001 | 00080 | 17 | Stuck thruster: Thruster 11 fails CLOSED
24, | 00001 | 00080 | 17 | Stuck thruster: Thruster 12 fails OPEN
25. | 00001 | 00080 | 17 | Stuck thruster: Thruster 12 fails CLOSED
26. 30 30 Isolation Valve failure OPEN: Not responsive to CLOSE command
27. 40 40 Isolation Valve failure CLOSED: Not responsve to OPEN command
28. | 00900 | 00900 67 | Faulty rotationa gyro: Incorrect Roll Rate: Low offset; Low gain
29. | 00900 | 00900 67 | Faulty rotationa gyro: Incorrect Roll Rate: Low offset; High gain
30. | 00900 | 00900 67 | Faulty rotationa gyro: Incorrect Roll Rate: High offset; Low gain

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 9 rev.a December 2006

. 7
i ’.{/\\ D

d TRIAKIS CORPORATION
| @

Test | Ref# | FM # | Page# Failure Mode Description

31. | 00900 | 00900 67 | Faulty rotational gyro: Incorrect Roll Rate: High offset; High gain
32. | 00900 | 00900 67 | Faulty rotationa gyro: Incorrect Yaw Rate: Low offset; Low gain

33. | 00900 | 00900 67 | Faulty rotationa gyro: Incorrect Yaw Rate: Low offset; High gain
00900 | 00900 67 | Faulty rotationa gyro: Incorrect Yaw Rate: High offset; Low gain
00900 | 00900 67 | Faulty rotationa gyro: Incorrect Yaw Rate: High offset; High gain
36. | 00900 | 00900 67 | Faulty rotationa gyro: Incorrect Pitch Rate: Low offset; Low gain
37. | 00900 | 00900 67 | Faulty rotationa gyro: Incorrect Pitch Rate: Low offset; High gain
38. | 00900 | 00900 67 | Faulty rotationa gyro: Incorrect Pitch Rate: High offset; Low gain
39. | 00900 | 00900 67 | Faulty rotationa gyro: Incorrect Pitch Rate: High offset; High gain
40. | 00900 | 00900 67 | Faulty rotationa gyro: NO Signal

®

&

We met this objective by successfully implementing the failure modes listed in table 1, and demonstrating that they
may be manifested during test of the FSW.

4.2 Objective B

To create & test failure mode scenarios in the virtual environment that are not practical in a HW integration test
lab.

4.2.1 Project-level Test Environments

Essentially all of the failure modes in table 1 may prove difficult and/or economically chalenging to create and test
realitically in a hardware integration test laboratory. The MAC is designed to operate in a space environment under
micro-gravity conditions, with its 12 micro-thrusters oriented to provide 6 degrees of freedom (DOF) (3 attitudinal,
3 directional) of control over its movement. Two separate integration/test environments have been created by the
devel opment project to test the MAC:

1. Thefirst MAC test environment comprises a massive, granite air-bearing table with a cradle to hold the
MAC prototype. The cradle supplies the MAC with propellant and provides the air cushion required to
float the assemblage during operation. This has proven hepful for validating much of the Guidance,
Navigation, & Control algorithmsbut is limited by itsinability to provide more than 3 DOF (2 trandational
+ 1 yaw).

2. Thesecond test environment is avirtual orbital environment ssimulator providing 6 DOF movement with a
hardware-in-the-loop (HITL) connection to the MAC as well asa GPS signal generator. This supports the
validation of agorithms developed for 6-DOF control, inertia & relative automatic altitude hold, automatic
point-to-point maneuvering, relative GPS navigation, and GPS-based trandation hold.

Clearly, the goal of these two test set-upswas not principally that of failure mode testing, but of MAC hardware and
algorithm development. Of these two test environments, the second should support more realism in test scenario
creation with its ability to provide 6 DOF mobility. However, test set-ups incorporating HITL generally come with
a high price tag and other limitations that serve to restrict the number that can be produced and, correspondingly,
access by non-devel opment personnel such as SMA and IV&V teams.

4.2.2 VSIL Environment

The VSIL environment is purely virtual, i.e it does not require the use of HITL to run the FSW, to provide sensor
stimulusto the MAC, or for any other purpose. ThisVSIL models the MAC hardware and its orbital environment at

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 10 rev.a December 2006

|

the component level, and with sufficient fidelity to run the uninstrumented MAC FSW object code. Fidelity of each
component model has been developed according to what is required for the purposes of our investigation. For
example, the PowerPC750 CPU part is modeled with ardatively high level of fidelity (as required to run the FSW
obj ect) while components such asthe rate gyro, FPGAS, etc. are modeled at a somewhat higher level of abstraction.

4.2.3 Failure Mode Test Results

As discussed in the methodol ogy section, failure mode testing is initiated from a program that is executed when the
MAC simulator starts. Each test begins by commanding the MAC to move from its starting position to a destination
waypoint and attitude, through the use of the MAC auto-move function. Failure modes are manifested while the
MAC attempts to fly the commanded profile, and position and attitude data are logged to a file at one second
intervals. To establish abasis for comparison, each test profile is repeated without manifesting failure modes so that
data from a nominal MAC flight may be collected. All tests presented here were run on the VSIL executing the
FSW object code. All position measurements arein meters. Attitude waypoint numbers are in degrees, and plotted
datais given in sine of theaxisangle.

4.23.1 Leaky Gas Test
The Leaky Gas failure mode is described in the FMEA report as: “External Leakage” which may result in:

» Degraded or loss of GN2 flow to thrusters.

» Possible uncommanded motion due toloss of fuel resulting in inability to arrest motion.
» Avionics software commands Safe Mode if uncommanded motion detected.

« Degraded or loss of ability to contral free-flier motion.

» Probable loss of Sprint mission objective.

« Potentid loss of free-flier.

» Potentia injury/damage to crew member or Orhiter.

We have chosen to manifest this failure as one that causes a small (0.031lbs) net thrugt a the edge of the Mini-
AERCam shell, tangential to thruster 1 & 2 cluster on the X axis, and paralléd to the Y-axisin the -Y direction. In
the absence of any corrective thruster action, thisleak causes the MAC to rotate about the Z-axis (Yaw). Thetest
may be easily adjusted to change the amount of thrust, the direction of the thrust, and the axis about which it is
applied. Enhancements to the fidelity of this failure model would include loss of propellant and drop in pressure
commensurate with location and severity of leak.

Weran thistest using profile #1 with the Mini-AERCam (MAC) darting at rest at x,y,z location -25, 0, 0. Profile #1
commands the MAC to move to waypoint -20, -10, 5 and attitude 0, -40, 0. The test records 30 seconds of position
and attitude data before manifesting the leaky gas failure, and another 7 min 30 sec of data with the failure present.
We aso ran the test without invoking the failure mode in order to collect 8 minutes of nomina data for comparison.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 11 rev.a December 2006

—Nomx

——Nomy
15 ——Nomz

-20

-30

FIGURE 1: LEAKY GAS TEST POSITION PLOT - PROFILE #1

The datain figure 1 show that the MAC maintained a position profile fairly close (within 2.5m) to nomina in the
presence of the thrust caused by the leaky gas failure mode while flying profile #1.

15

05 /_\
—sin(roll)

—— sin(pitch)

. e n ——sin(yaw)

) a1 391 o ——Nomsinr
——Nomsinp

/\ / —— Nomsiny

(=}

-0.!

3

-15

FIGURE 2: LEAKY GAS TEST ATTITUDE PLOT - PROFILE #1

The attitude datain figure 2 show that the MAC FSW was unable to maintain a steady attitude in the presence of the
parasitic thrust produced by the leaky gas fault while flying profile #1.

4.2.3.2 Stuck Thruster Tests

The Stuck Thruster failure mode is analyzed by axis and described in the FMEA as “One of the x,y,z axis Thrusters
Failsfrom the Pair Thrusters (x = Jet 1, Jet2), (x = Jet 7, Jet 8 Fails) ” which may result in:

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 12 rev.a December 2006

AN
\ d TRIAKIS CORPORATION
il @

* Messages and audible alarm at control station for Thruster loss.
» Loss of ahility to control free-flyer motion about axis.

* Freeflyer infreedrift.

» Lossof Mini AERCam Demonstrator mission objective.

» Possibleinjury/damage to EVA crew member or Orbiter.

Theanalysis also looked at failure of pairs of jets within each cluster, however, the analysis was nat broken down to
the failure of individua thrusters, and further to failure state (OPEN/CLOSED). The MAC thrusters are
individually controlled by the FSW and the probahility of asingle thruster failureis likely higher than having a pair
fail together. Figure 3 presents a diagram of the thruster configuration for reference. The rotationa axis are
mapped asfollows: X == ROLL; Y == PITCH; Z == YAW.

¥

Z

FIGURE 3: MAC THRUSTER CONFIGURATION

We manifested this failure by commanding the thruster to the failed state (OPEN or CLOSED) and making it
unresponsive to commands from the FSW.

We ran the first test from rest position -25,0,0 directly to profile #3, collecting 60 secs of nominal data, and then
failing each of the 12 thrusters first OPEN and the CLOSED for 60 secs each while collecting data. Each thruster
was restored to nominal functioning before proceeding to test the next one and at the end of testing all thrusters, we
collected another 60 secs of nominal data. A total of 26 minutes of data were collected and a comparison run of 26
minutes down the same profile with no failures manifested was made. The destination waypoint for profile #3 is
Pos: 5,15,-5 and Att: 0,0,0.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 13 rev.a December 2006

iy
d TRIAKIS CORPORATION

160

140

o /’\

100 /
80
/ :
z
60 —— |
Nom x
——Nomy
40 / ——Nomz
20

121 241 il 601 721 841 961 1081 1201 1321 1441

-20

-40

FIGURE 4: STUCK THRUSTER TEST POSITION PLOT - PROFILE #3
Asyou can see from figure 4, the FSW flew close to the nominal profile for the first 540 seconds despite the thruster
failures. At 540 seconds, thruster 5 failure mode tests begin with the thruster failing OPEN for 60 seconds and then
CLOSED for 60 seconds. During the thruster 5 failures, the MAC begins to depart the path to its commanded
position waypoint — principally in the 'y' and 'Z' axis'. Whether this occurs in response to the previous thruster

failures or the failure modes of thruster 5 wasn't determined but after the 840 second mark, the MAC beginsto slow
its departure and appears to head back to the commanded waypoint.

"
N ‘HH MU

T : T T EL i Ay T i v g
121 241 361 961 108y iy
-0.5

FIGURE 5: STUCK THRUSTER TEST ATTITUDE PLOT - PROFILE #3

—— sin(roll)

—— sin(pitch)

sin(yaw)

Nomsinr
—— Nomsinp

——Nomsiny

Figure 5 shows a plot of the MAC attitude during the course of running profile #3 from the rest position. It's
interesting to note that the data show the FSW is able to control the attitude fairly well about the pitch and yaw axis
in the presence of thruster failures, but not theroll axis. Since thisis a plot of the sin of the axis angle, oscillation
indicates that the MAC is rotating or rocking about the axis.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 14 rev.a December 2006

i
TRIAKIS CORPORATION

Expanding the period about the point where the MAC changes course (at 540 seconds), figure 6 shows that the
MAC had been rolling during the thruster 4 failures but settled down at aroll angle of about 90 degrees asit entered
the thruster 5 failure mode test period.

AL
RV
|
|

02
OT=_r

\\

——sin(roll)

—— sin(pitch)

120 151 181 / 211)\(sin(yaw)

w /.
T
g
=
1
yi
T
T
6
{
/.
1

-0.2

-0.6

|
N
|
|

LT [A~/

FIGURE 6: STUCK THRUSTERS 4 & 5 TEST ATTITUDE PLOT - PROFILE #3

4.2.3.3 Isolation Valve Tests
The Isolation Valve failure mode is described in the FMEA as “Fails Open” or “Fails Closed” which may result in:

« Fird failure: Inability toisolate GN2 supply from remainder of propulsion plumbing and components
» Second failure: Thruster fails on or computing upset resulting in uncommanded motion.

* Unableto arrest motion

« Lossof Sprint mission objective

« Potentia injury/damage to EVA crew member or Orhiter.

Mitigation of this possible failure mode is handled in the Safe Mode FSW module. Unfortunately, this module was
not completed at the time the MAC project was canceled and therefore no commands are sent to the isolation valve
by the FSW in response to erratic MAC behavior. Whilewe did implement failure modes in the isolation valve part,
there was no useful test to evaluate the FSW behavior in controlling the valve.

Valve failure was implemented as causing the valve to be unresponsive to either the OPEN or CLOSE signal.
4.2.3.4 MEMS Rate Gyro Tests
The Rate Gyro failure mode is described in the FMEA as “Incorrect or no signa” which may result in:

« Avionics software detects discrepancy between commanded and measured rates and commands Safe M ode,
closing theiso valve

« Lossof ahility to control free flyer motion

« Freeflyerinfreedrift

» Lossof Sprint Misson objective

« Possibleinjury/damageto EV crew and Orbiter

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 15 rev.a December 2006

4 \. 4 -I".
i ’.{/\\ D

d TRIAKIS CORPORATION
| @

We implemented three types of failure modes in the ssimulated MEMS rate gyroscope part. Totd failure of the
MEMS gyro is accomplished by configuring it to be unresponsive to the multiplexer commands coming from the
FPGA controller. Variable gain and offset biases may also be introduced into the output of each axis of the gyro.

We conducted three tests on the FSW object code to assess MAC behavior in the presence of rate gyro failures. The
first test commands the MAC to fly profile #3 (Pos: 5,15,-5 and Att: 0,0,0), and begins by collecting 60 secs of
nomina data before causing any RG failures. Then each axisisfailed in turn with the following sequence: offset =
0.2, gain= 0.5; offset = .2, gain = 1.5; offset = 0.4, gain = 0.5; offset = 0.4, gain = 1.5. Beginning with theroll axis,
each setting is run for 60 secs before restoring the axis to nominal operational parameters and proceeding to the
pitch and then yaw axis. The end of thetest collects another 60 secs of nominal data. Total duration of thetest is 14
minutes. A nominal profile was run for 14 minutes for comparison with the test data.

40

20

-y

; T T T T i T T T T
L 121 241 v/ 481 601 721 Nom x

—Nomy
T ——Nom z

-20

-40

FIGURE 7: RATE GYRO OFFSET & GAIN FAULTS TEST POSITION PLOT - PROFILE #3

Figure 7 shows that after about 6 minutes of bias failures being induced, the MAC appears to have abandoned flying
to the commanded waypoint and departed from the nominal path in all three axis’.

Theplot in figure 8 shows the attitude of the MAC during the RG failure tests. Not surprisngly, the MAC looses its
ability to maintain attitude stability in the absence of rate gyro information. As offset and gain bias faults are
introduced in each axis (beginning at 61 seconds), the ahility of the FSW to maintain attitude control is challenged
accordingly.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 16 rev.a December 2006

U

FIGURE 8: RATE GYRO OFFSET & GAIN FAULTS TEST ATTITUDE PLOT - PROFILE #3

I e

h A
LR || ===

6 ‘ Nom sin r
——Nom sin p
‘ ——Nom siny

I

Thelow offset/low gain roll axis failure mode causes loss of roll stability (seconds 61-120) that improves when the

gain is boosted (secs 121-180), worsens with the high offset/low gain failure (181-240) and improves again with

increasing gain (241-300). Theplot in figure9 below isan expanded view (61-300 seconds) of the attitude behavior

during this sequence of roll axis bias failure modes. Note that the time frame of the below chart is rdative to the

start of the roll axis bias failure mode tests so the first second above corresponds to the 61% second on the previous
—sin(roll)

A
A ==

o [i A sin(yaw)

) [NAA P Nom sinr

U Y TR

——Nom siny
FIGURE 9: RG ROLL AXIS OFFSET & GAIN FAULTS TEST ATTITUDE PLOT - PROFILE #3

The second test was identical to the first except for the insertion of a 10 minute period during which a total RG
faillure was commanded immediately prior to invoking the sequence of offset and gain bias failures. The total
duration of thistest then is 24 minutes.

The position data for the second test, plotted in figure 10, show that the MAC followed the nominal course very
closely during the total MEMS gyro failure when flying this profile. As with the previous test, however, the
individual axis offset and gain bias failures caused the MAC to fly away from the nominal route to the waypoint.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 17 rev.a December 2006

4 \. 4 -I".
i ’.{/\\ D

d TRIAKIS CORPORATION
| @

50

. /
. /
. /

‘—‘——-——'—_'———
10 JE—
y
0 z
1 121 241 3 r”/f/;f, 841 961 \mm 1201 1321 Nom x
/° \ — Nomy
10

- —Nom z
-20 \

-30 \
-40 x@‘é

-50

FIGURE 10: RATE GYRO TOTAL FAILURE TEST POSITION PLOT - PROFILE #3

The attitude plot for this test, shown in figure 11 below, reflects the position stability during the period of total RG
failure, aswdl astheloss of attitude control during the offset and gain bias fault period.

M. W\NH""W\NN
05 ‘ \O ﬂ”‘ IM \ W Mn.

I —
H =
05 U '?U U [” | NIUU ”

FIGURE 11: RATE GYRO TOTAL FAILURE TEST ATTITUDE PLOT - PROFILE #3

Given the high degree of attitude stability exhibited by the MAC in the presence of a total RG failure while flying
profile #3, we thought it might be interesting to run the same test while flying a different profile. Since profile #3
does not incorporate a change of attitude from the 0, 0, O position, we hypothesized that with the thrusters firing in
balanced pairs, the MAC could fly to the commanded position waypoint without changing its attitude. To test this
idea we ran the same test with profile #4, one that commands the MAC to fly to new attitude and position
waypoints.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 18 rev.a December 2006

Wy
Il
! TRIAKIS CORPORATION

50

40

30

20

10
/ Nom x
—Nomy
—Nomz
0 T T T T T T T T T T T T T T
1 21 241 361 481 601 721 841 961 081 1201 1321
-10 \ // /
-20 / ~ -/
/ \'/

-30

FIGURE 12: RATE GYRO TOTAL FAILURE TEST POSITION PLOT - PROFILE #4

From the datain the plot shown in figure 12 above, it is clear that the MAC was unable to follow a nominal course
during the total failure of the RG whileflying profile #4.

) }r 'H' A
|]M w ’ I S
i it
_1 T AR RLATELA TR

FIGURE 13: RATE GYRO TOTAL FAILURE TEST ATTITUDE PLOT - PROFILE #4

The data in the expanded attitude plot in figure 13 shows that the MAC had aready stabilized on its new attitude
waypoint before the total gyro failure occurred at 61 seconds. So it isnot necessary for the MAC to be in transition
attitudinally at the time the RG fails, for it to lose attitude control. Yet it isable to maintain contral in the absence of
RG dataif the attitude iszero in all axis.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 19 rev.a December 2006

. 7
i ’.{/\\ D

d TRIAKIS CORPORATION
| @

Our selection of the offset and gain bias values were arbitrary (and possibly excessive) and applied in combination.
To better quantify how the FSW behaves in response to MEMS rate gyro failure modes, testing of other offset and
gain bias values independent of each other could provide useful information about the sensitivity of the FSW to
errors of thistype on aper-axisbasis. It might also be informative to run these tests individually rather than directly
following in sequence. Thisway thetest of each axiswould begin with the MAC attitude under good control and
end by restoring nominal operation of the RG and monitoring how the FSW recovers.

4.3 Objective C
To evaluateif project SQA can be more effective by complementing FMEA with flight SW testing.

Our failure mode testing of the MAC FSW produced results that we believe provide a compelling case for the use of
failure mode testing of FSW by the SMA, and/or IV&V teams. Lets examine how testing the FSW with the failure
modes we sdl ected might have added to the MAC FMEA report. The Safe Mode application was not implemented
in the FSW build we tested so we were unable to evaluate its behavior for this study.

a) Leaky GasTest: The FMEA report lists “Avionics software commands Safe Mode if uncommanded
motion detected. Degraded or loss of ability to control free-flyer motion.” among the failure effect End
Items. Our test revealsthat the MAC is able to fly within 2.5m of anominal profile to a programmed
waypoint with agasleak fault producing 0.261bs thrugt tangential to thruster 1 & 2 cluster on the X axis,
and paralld tothe Y-axisin the-Y direction. In the absence of any corrective thruster action, thisleak
causes the MAC to rotate about the Z-axis (Y aw).

Had Safe M ode been operational during our test, it should have taken control asaresult of the
uncommanded motion and the outcome of the flight would likely have differed from what we observed.
Additional tests could be run to create aprofile of course deviation vs. leak thrust vectors. This could be
used to guide decisions on whether or how to retrieve the MAC, dependent upon its distance and number of
waypointsto fly to a safe rendezvous, if it should devel op such afailure.

Further, if the magnitude of parasitic thrust does not exceed the corrective capacity of the thrusters, perhaps
asafe gtrategy could be devel oped for the MAC to auto-move to aretrieva point (or even the hanger), and
the remaining propellant vented in a balanced manner (if shutting the iso-val ve doesn't stop the leak).
While the mission objectives may be unfulfilled, these measures could improve the likelihood of retrieving
the MAC.

b) Stuck Thrusters: To evaluate the effect of thruster failures, the FMEA report grouped thrusters by those
controlling the movement about each axis (4 per axis), and assessed the effect of the failure of asingle
thruster of the group. The FMEA indicates that the failure will cause the loss of ahility to control the MAC
in the affected axis — leaving the MAC to drift.

Failure mode testing reveal s that the MAC FSW is able to maintain control of the pitch and yaw attitudes
despite each of the thrustersfailing open and closed sequentially. However, the FSW isunableto maintain
roll axis stability during failures of about half of the thrusters (see figure 5). If pitch and yaw can be
controlled during thruster failures, could roll control be improved to perform smilarly through a software
or thruster configuration change?

In addition to the attitude control dynamics, we observed that during the failures of thruster 5, the MAC
begins to depart the path to its commanded position waypoint — principally in the 'y' and 'z' axis'. During
the failure tests of thruster 7, the MAC beginsto slow its departure and later turnsback to the commanded
waypoint. Isthisaconsequence of theroll instability? Will thisbehavior occur under moreredistic failure
scenarios, e.g. onethruster failing rather than all failing sequentially? Additiona testing is necessary to
better understand this behavior.

|
Trigkis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834

CAGE Code: 1XRC3 20 rev. a December 2006

. 7
i ’.{/\\ D

d TRIAKIS CORPORATION
| @

Characterizing the behavior of the MAC in response to thruster failures may support the devel opment of
effective strategies for responding to failuresin a manner that improves the probabilities of recovering the
MAC, or avoiding possible injury to EVA crew-member or orbiter.

c) Isolation Valve: Weimplemented theisolation vave part in the MAC VSIL and created a failure mode
that put it into an unresponsive state such that if it was open, it would not respond to commandsto closeit,
and visaversa. During our testing of thisfailure mode, we discovered that commands were not being sent
from the FSW during the test, to the FPGA register controlling operation of theiso-valve. It turnsout that
the Safe Mode application had not been incorporated into this software build. Thiswas not surprising since
funding for continued Mini-AERCam development was not assured at the time, and was eventually cut.
Thisfinding would certainly be of interest if discovered near the end of the MAC devel opment effort, but it
isunlikely that such an omission would occur.

d) Rate Gyro Offset/Gain BiasErrors: Itisnowonder that the MAC loses attitude stability when faced with
rate gyro bias errors, particularly those related to offset of asignificant magnitude. The FSW demonstrated
an impressive ability to continue flying to its commanded translational waypoint despite bias faultsin the
roll axisrategyro signa. When pitch axis biasfailures are introduced, however, the MAC departs the path
to its commanded position waypoint in all three trandational axis (figure 7).

The FMEA report indicates that the MAC should transition to Safe M ode upon detection of a discrepancy
between commanded and measured rates, and close theiso-valve. It recommends attempting to reacquire
the MAC, presumably under manual control.

It may be that certain rate gyro bias failures develop over time, in which case the FSW may be ableto
detect a discrepancy before the point of attitude instability is reached. Failure mode testing can help
determinethat point empirically, and | ead to recommendations about reporting rate discrepancies, and
when to abort amission and return to the hanger while still within safe attitude controll ability limits.

Another observation from thetest resultsis that the MAC isless sensitive to gain bias failures than offset
bias faillures. Thismay or may not warrant separate strategies for dealing with each failuretype. Since
these types of failuresfall into the realm of degraded performance, it may be possible to compensate for the
bias by adding a calibration function to the software that could be exercised when arate discrepancy has
been detected.

Failure management strategies may be further refined based on the observation that the MAC reacts
differently to bias failuresin different axis.

€) RateGyroTotal Failure: Thetotal failure of the MEMS rate gyro part was modeled by disabling its
response to requests for datafrom the controller (processor FPGA) part. Inthe FMEA report, thiswas
classified in the same category asthe rate gyro bias failures and, accordingly, the MAC responds by
switching to Safe Mode and closing theiso-valve.

Testing with thisfailure mode revealed that when the MAC attitude was at its zero reference orientation, it
was able to auto-move to atrand ational waypoint provided no attitude change was commanded (see first
11 minutes of figure 10). Thismay suggest aresponse strategy that takes the MAC attitude into account at
thetime of rate gyro failure. Sincethe MAC behaves differently in the face of atotal failure, it makes
sense to classify it separately from rate gyro bias failures.

In all cases, testing the behavior of the FSW in response to failures provides quantitative, empirical information that
promotes an improved understanding of the MAC dynamics under anomalous conditions. The test scenarios we
created wereintended to stress the system to elicit behaviors that may be candidates for more detailed investigation.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834

CAGE Code: 1XRC3 21 rev. a December 2006

TRIAKIS CORPORATION

Evaluate methods of gathering metric data on dynamic aspects of a software program only possible (or at least a lot
easier) inavirtual environment.

In addition to running the failure mode tests developed for assessing the MAC FSW, we configured the test
programs to gather some SW execution metrics of interest. None of the metrics gathered required instrumentation
of the code itsdf. The metric data files are included as part of the project documentation submitted to the NASA
IV&V Facility and may be accessed with permission from the research authority at the facility.

a) SoftwarePath Coverage: The software path coverage report shows all conditiona jump (or call)
assembly code instructions and identifies whether a condition caused a jump or no jump (execution fell
through to the following instruction) during execution. Typicaly, test development would not be
considered complete until all code paths are exercised. Table 2 shows an excerpt from the MAC FSW
path coverage report.

Table2: SW Path Coverage Report Excer pt

NO
ADDRESS JUuw JUWP SYMBOL OFFSET
001bc434 X X gnc_col l ect _rate_data + 1c hex
001bc4cO X gnc_col l ect _rate_data + a8 hex
001bc4dc X X gnc_col l ect _rate_data + c4 hex
001lbc4e4 X gnc_col l ect _rate_data + cc hex
001bc560 X X gnc_col l ect _rate_data + 148 hex
001bc6d8 X gnc_resune_setup + b8 hex
001bc720 X X gncexec_cnd_swi tch + 44 hex
001bc724 X X gncexec_cnd_sw tch + 48 hex
001bc72c X X gncexec_cnd_sw tch + 50 hex
001bc730 X X gncexec_cnd_sw tch + 54 hex
001bc740 X gncexec_cnd_sw tch + 64 hex
001bc74c X gncexec_cnd_swi tch + 70 hex
001bc774 X gncexec_cnd_sw tch + 98 hex
001bc778 X X gncexec_cnd_sw tch + 9c¢ hex
001bc780 X gncexec_cnd_swi tch + a4 hex
001bc788 X gncexec_cnd_swi tch + ac hex
001bc7a8 X X gncexec_cnd_swi tch + cc hex
001lbc7ac X gncexec_cnd_swi tch + dO hex
001bc7b4 X gncexec_cnd_swi tch + d8 hex
001bc7dc X X gncexec_cnd_swi tch + 100 hex
001lbc7e4 X X gncexec_cnd_sw tch + 108 hex
001lbc7ec X gncexec_cnd_swi tch + 110 hex
001bc7f8 X X gncexec_cnd_swi tch + 11c hex
001bc7fc X X gncexec_cnd_swi tch + 120 hex
001bc804 X gncexec_cnd_swi tch + 128 hex
001bc80c X gncexec_cnd_swi tch + 130 hex
001bc820 X gncexec_cnd_sw tch + 144 hex
001bcf 18 X X gncexec_cnd_sw tch + 83c hex
001bcf 6¢ X gncexec_cnd_sw tch + 890 hex
001bd0d4 X X gncexec_cnd_sw tch + 9f8 hex
001bd2a8 X X gncexec_cnd_sw tch + bcc hex
001bd2b4 X gncexec_cnd_sw tch + bd8 hex
001bd2bc X gncexec_cnd_sw tch + be0 hex
001bd340 X gnc_check_and_rnake_fireinput + 30 hex
001bd7e4 X X gnc_check_and_neke_firei nput + 4d4 hex
001bd860 X X gnc_check_and_neke_firei nput + 550 hex
001bdal0 X gncexec + 54 hex
001bdbcO X X gncexec + 204 hex
001bdc84 X gncexec + 2c8 hex
001lbdca4 X gncexec + 2e8 hex
001bdee8 X gncexec + 52c¢ hex
001bdf 4c X X gncexec + 590 hex
001bdf 88 X X gncexec + 5cc hex
001bdf a0 X X gncexec + 5e4 hex

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 22 rev.a December 2006

TRIAKIS CORPORATION

b) Software Code Coverage: The software code coverage report calculates the percentage of code
executed during the test run. For this report, the MAC was commanded to move from its initialized
position to the waypoint and attitude of profile #1. No failure mode tests were run during the collection
of this report. Our report shows that 17% (763 lines of code in aercam_gnc()) of the GNC code was
executed during thisauto-move exercise. ldeally, tests would continue to be written until 200% coverage
was achieved.

c) Software Subroutine Call & Interrupt: This report logs the time of al subroutine calls, interrupts, and
returns made during program execution. These data are useful for analyzing and debugging program
contral flow, and may find use by SMA as a means of observing task and interrupt timing & nesting
behavior. Table 3 presents an excerpt of this report showing an interrupt occurring during the
taskDelay() call.

Table3: SW Subroutine Call & Interrupt Report Excer pt

Time Address Subroutine Call / Interrupt

60.211105 001c4d7c bl -> 002784cO [taskDel ay] <rl1 = 00c574c0>
60. 211105 00278674 bl -> 0027c008 [w ndDel ay] <rl1 = 00c574a0>

60.211106 0027c0dc bcctrl -> 0025d850 [gPri BMapRenmove] <rl = 00c57480>
60.211106 0025d880 bl -> 0025bb6c [dl| Remove] <rl1 = 00c57470>
60.211106 0025bb9c bclr -> 0025d884

60.211107 0025d8a0 bl -> 0025d7a8 [qPri BvapC ear] <rl = 00c57470>
60.211107 0025d7e8 bclr -> 0025d8a4

60.211107 0025d8b8 bl -> 0025d7ec [qPriBMapHi gh] <rl1 = 00c57470>
60.211107 0025d808 bl -> 0023c390 [ffsMsb] <rl = 00c57460>
60.211107 0023c398 bclr -> 0025d80c

60.211108 0025d81c bl -> 0023c390 [ffsMsb] <rl = 00c57460>
60.211108 0023c398 bclr -> 0025d820

60.211108 0025d84c bclr -> 0025d8bc

60.211108 0025d908 bclr -> 0027c0e0

60.211109 0027cl144 bcectrl -> 0025d9d4 [qPriDeltaPut] <rl1 = 00c57480>
60.211110 0025da2c bl -> 0025bb24 [dIlInsert] <rl = 00c57460>
60.211110 0025bb5c bclr -> 0025da30

60.211110 0025da80 bclr -> 0027c148

60. 211110 0027c178 bclr -> 00278678
60.211110 00278678 bl -> 002616a0 [w ndExit] <rl1 = 00c574a0>

60.211112 002716e4 bl -> 001fc460 [_savegpr_21 1] <r1l = 00c58cf 0>
60.211113 001f c490 bclr -> 002716e8

60.211113 0027175c bl -> 0027d9c8 [wor kQDoWwsrk] <r1l = 00c58cf 0>
60.211113 0027d9d4 bl -> 001f c474 [_savegpr_26_l] <rl1 = 00c58cd0>
60.211113 001f c490 bclr -> 0027d9d8

60.211113 0027d9d8 bl -> 0023fbd8 [__errno] <rl1 = 00c58cd0>
60.211113 0023f be0 bclr -> 0027d9dc

60.211114 0027da54 bl -> 0023fbd8 [__errno] <rl1 = 00c58cd0>
60.211114 0023f be0 bclr -> 0027da58

60.211114 001fc4lc bclr -> 00271760

60.211114 00271760 bl -> 001efb30 [intLock] <rl = 00c58cf0>
60.211114 001ef b40 bclr -> 00271764

60.211115 00271850 bl -> 00lefb44 [intUnlock] <rl = 00c58cf0>
60.211115 00lef b58 bclr -> 00271854

60.211115 00271854 bl -> 0027d7f8 [w ndPw Down] <r1l = 00c58cf 0>
60.211115 0027d824 bl -> 001efb30 [intLock] <rl = 00c58cd0>
60.211115 00lef b40 bclr -> 0027d828

60.211115 0027d82c bl -> 0027dle4 [w ndTi ckWaitGet] <rl1 = 00c58cd0>
60.211116 0027d220 bcectrl -> 0025dbf0 [qPriDel taKey] <r1 = 00c58cc0>
60.211116 0025dc14 bclr -> 0027d224

60.211116 0027d234 bclr -> 0027d830

60.211116 0027d868 bl -> 00lefb44 [intUnlock] <rl = 00c58cd0>
60.211116 00lef b58 bclr -> 0027d86¢

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 23 rev.a December 2006

TRIAKIS CORPORATION

Time Address Subroutine Call / Interrupt
60.211117 0027d878 bcctrl -> 001f01e0 [vxPower Down] <rl1 = 00c58cd0>
60.211117 001f 0218 bclr -> 0027d87c
60.211117 0027d890 bclr -> 00271858
60.211824 00271858 interrupt -> 00000500
60. 211824 00000508 bl -> 00leeeec [intEnt] <rl1 = 00c58cf 0>
60.211827 00lef 16¢ bcetrl -> 0027d894 [wi ndPw Up] <rl1 = 00be6828>
60.211827 0027d8c0 bl -> 001lefb30 [intLock] <rl = 00be6808>
60.211827 00lef b40 bclr -> 0027d8c4
60.211827 0027d928 bl -> 00lefb44 [intUnlock] <rl = 00be6808>
60.211828 00lef b58 bclr -> 0027d92c
60.211828 0027d944 bclr -> 001lef 170
60.211828 00lef 18c bclr -> 0000050c
60.211828 00000514 bl -> 00010604 [sysAerPiclntHandler] <rl1 = 00be6838>
60.211828 00010610 bl -> 001fc464 [_savegpr_22_|] <rl1 = 00be6808>
60.211828 001f c490 bclr -> 00010614
60.211829 00010630 bl -> 000105b0 [sysAerPiclntLevel Set] <rl1 = 00be6808>
60. 211829 000105bc bl -> 001fc47c [_savegpr_28_1] <rl = 00be67e8>
60.211829 001f c490 bclr -> 000105c0
60.211829 001f c43c bclr -> 00010634
60.211830 0001063c bl -> 00lefb44 [intUnlock] <rl = 00be6808>
60.211830 00lef b58 bclr -> 00010640
60.211830 000106a0 bcctrl -> 000108f8 [sysC kint] <rl = 00be6808>
60.211830 00010938 bcectrl -> 0001395c [usrC ock] <rl = 00be67f8>
60.211831 00013968 bl -> 0027ablc [tickAnnounce] <rl = 00be67e8>
60. 211831 0027abdc bl -> 0027c78c [wi ndTi ckAnnounce] <rl = 00be67d8>
60.211831 0027c798 bl -> 001fc46¢c [_savegpr_24_ 1] <rl = 00be67a8>
60.211831 001f c490 bclr -> 0027c79c
60.211832 0027c82c bcetrl -> 0025db88 [qgPri Del t aGet Expired] <rl = 00be67a8>
60. 211833 0025dbd4 bl -> 0025bb6c [dl | Renbve] <rl = 00be6798>
60. 211833 0025bba4 bclr -> 0025dbd8
60. 211833 0025dbec bclr -> 0027c830
60. 211834 0027c910 bl -> 00lefdb4 [taskRtnVal ueSet] <rl = 00be67a8>
60.211834 00lefdb8 bclr -> 0027c914
60.211834 0027ca30 bcctrl -> 0025d738 [qPri BMapPut] <rl1 = 00be67a8>
60. 211835 0025bb5c bclr -> 0027ca34
60. 211835 0027ca4d4 bcetrl -> 0025db88 [qgPri Del t aGet Expired] <rl = 00be67a8>
60.211836 0025dbd4 bl -> 0025bb6c [dl | Renbve] <rl = 00be6798>
60.211836 0025bba4 bclr -> 0025dbd8
60.211836 0025dbec bclr -> 0027ca48
60.211836 0027c910 bl -> 00lefdb4 [taskRtnVal ueSet] <rl = 00be67a8>
60.211837 00lefdb8 bclr -> 0027c914
60.211837 0027ca30 bcctrl -> 0025d738 [qPri BMapPut] <rl1 = 00be67a8>
60.211838 0025bb5c bclr -> 0027ca34
60.211838 0027ca4d4 bcetrl -> 0025db88 [qgPri Del t aGet Expired] <rl = 00be67a8>
60.211838 0025dbec bclr -> 0027ca48
60. 211839 0027ch6ec bcetrl -> 0026ed08 [ker nel RoundRobi nHook] <r1 = 00be67a8>
60.211840 0026eel4 bcetrl -> 0025d850 [qgPri BMapRenove] <rl = 00be6798>
60.211840 0025d880 bl -> 0025bb6c [dl | Renbve] <rl = 00be6788>
60.211840 0025bb9c bclr -> 0025d884
60.211840 0025d8a0 bl -> 0025d7a8 [qPri BvapCl ear] <rl = 00be6788>
60.211841 0025d7e8 bclr -> 0025d8a4
60.211841 0025d908 bclr -> 0026eel8
60.211841 0026ee30 bcetrl -> 0025d738 [qgPri BvapPut] <rl = 00be6798>
60.211842 0025bb5c bclr -> 0026ee34
60.211842 0026ee48 bclr -> 0027cb70
60.211843 001f c4lc bclr -> 0027abe0
60.211843 0027abe0 bl -> 002616a0 [wi ndExit] <rl = 00be67d8>
60. 211843 002616¢cc bl -> 0026152c [enptyWrkQueue] <rl = 00be67b8>
60.211844 0026169c bclr -> 002616d0
60.211844 002616f8 bclr -> 0027abe4d
60.211844 0027abf4 bclr -> 0001396¢
60.211844 00013978 bclr -> 0001093c
60.211844 00010948 bclr -> 000106a4

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 24 rev.a December 2006

Time Address Subroutine Call / Interrupt
60.211844 000106ac bl -> 001efb30 [intLock] <rl = 00be6808>
60.211844 001ef b40 bclr -> 000106b0
60.211845 001f c4lc bclr -> 00000518
60.211845 0000051c bl -> 00lef2fc [intExit] <rl = 00be6848>
60.211847 002716e4 bl -> 001fc460 [_savegpr_21 1] <rl1l = 00c58ce0>
60.211847 001f c490 bclr -> 002716e8
60.211847 0027175c bl -> 0027d9c8 [wor kQDoWork] <rl1l = 00c58ce0>
60.211848 0027d9d4 bl -> 001fc474 [_savegpr_26_1] <rl1l = 00c58cc0>
60.211848 001f c490 bclr -> 0027d9d8
60.211848 0027d9d8 bl -> 0023fbd8 [__errno] <rl = 00c58cc0>
60.211848 0023f be0 bclr -> 0027d9dc
60.211848 0027da54 bl -> 0023fbd8 [__errno] <rl = 00c58cc0>
60.211848 0023f be0 bclr -> 0027da58
60.211848 001f c4lc bclr -> 00271760
60.211849 00271760 bl -> 001efb30 [intLock] <rl = 00c58ce0>
60.211849 001lef b40 bclr -> 00271764
60.211849 00271888 bl -> 00lefb44 [intUnl ock] <rl1 = 00c58ce0>
60.211849 00lef b58 bclr -> 0027188c
60.211850 00271958 bcctrl -> 00246e98 [taskVar Swi t chHook] <r1 = 00c58ce0>
60. 211850 00246ec4 bl -> 001f5684 [obj Verify] <rl1 = 00c58cc0>
60.211850 001f 56a8 bclr -> 00246ec8
60.211851 00246fcc bclr -> 0027195c
60.211851 00271978 bl -> 001efb30 [intLock] <rl = 00c58ce0>
60.211851 00lef b40 bclr -> 0027197c
60.211851 00271ad4 bl -> 001fc344 [_restgpr_21] <rl = 00c58ce0>
60.211852 001f c370 bclr -> 00271ad8
60. 211854 00261a50 interrupt return -> 0027867c
60.211854 002786b8 bclr -> 00lecl24

Other reports may be generated to aid in both project-level, and SMA analysis activities. For example:
« TheSoftware Interrupt report is used to compute the percent of reserve processing time available.

« The Software Execution Marker report provides a look at where the processing time is spent. Thisis
done by counting the number of times that individual instructions are executed over a set period of time.
This, in effect, forms a histogram of where processing timeis spent during program execution.

Access to timing information, memory & register data, interrupt events, actuator & sensor data, and SW parameters,
supportstherecording of datafor creating many other metric reports.

4.4 Discussion

Unfortunately, funding for the Mini-AERCam spacecraft development was discontinued in December 2005 and
consequently, development MAC FSW was not completed. Our investigation was conducted with a software build
we received early November, 2005 identified as. Aercam3_V3.14. This build did not incorporate the Safe Mode
software and while the FIRE agorithm was included, it was not running in the simulator during our failure mode
testing effort. As such, the results of our failure mode tests do not necessarily represent the behavior of of the MAC
under the contral of aflight-worthy build of the software.

That said, the failure mode testing we conducted dicited attitudina and trandational control behavior that would
have been masked by activation of Safe Mode. For example, determination that the MAC is unable to maintain roll
control in the presence of certain thruster failures while it is able to maintain effective pitch and yaw sability
regardless of which thruster is failed. This may lead to changes in the Safe Mode design that could improve the
ability to recover the MAC should athruster failure occur. Thisisillustrative of the value of failure mode testing at
least prior to the integration of the Safe Mode function, and perhaps at earlier stages of the spacecraft development
aswell.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 25 rev.a December 2006

TRIAKIS CORPORATION

Since Safe Mode is designed to control the MAC in the event of a system failure, its behavior can also be
empirically evaluated through failure mode testing. Verification of the final FSW configuration can be
independently made by the SMA team through failure testing in the VSIL. This may confirm that:

a) failuresaredetected and reported as required,
b) trangtioninand out of Safe Mode occurs as specified, and
c) Safe Mode operates asintended.

Failure mode mitigation strategies may also be evaluated in this environment — particularly those implemented
through software control. Modified flight software may be loaded into the VSIL and evaluated empiricaly using
failure mode tests previously developed.

Evaluating operator-in-the-loop (OITL) mitigation strategies using the MAC VSIL would require greater execution
speeds than those we obtained while running the FSW object code. At real-time execution speeds, OITL mitigation
procedures could be verified in the VSIL and evaluated for their effectiveness. We have identified several
promising avenues through which we could speed up execution of the simulator from the present 16% red-time (on
an AMD 3700+ Athlon 64 PC) to the 100% red -time necessary for meaningful OITL operation.

5.0 IMPLICATIONS

The results presented in this report establish the potential value that failure mode testing can add to FMEA and
consequently, to safety and mission assurance. No longer need strategies for the mitigation of failure modes be
devel oped solely on the basis of system design and control model analysis. Instead, SMA anaysts can set up failure
modes of interest within a VSIL, evaluate the behavior of the system and software in response to the failures, and
develop mitigation procedures based on empirical results. This is a significant step beyond what is typically
produced by analysis aone.

Failure mode testing is useful not only as an adjunct to FMEA, but it is also as a tool that allows SQA to confirm
that the system (including the software) has correctly implemented the behavior specified in the requirements. With
the combined benefits of failure mode testing in support of FMEA, and independent verification of requirements
through testing, SMA teams can significantly increase their effectiveness through the use of aVSIL.

6.0 FUTURE WORK

Meeting the objectives set forth for this investigation has prepared the way for use of a VSIL for failure mode
testing on an active NASA project. Since funding for the Mini-AERCam was discontinued at the end of 2005, we
have proposed to apply the results of this effort to the Crew Exploration Vehicle (CEV) avionics devel opment
project.

At the time of this writing, NASA has recently selected a vendor to develop the CEV and related launch vehicle
components. Thisisanideal timeto develop aVSIL for thefollowing reasons:

a) System requirements are available along with essential system design documentation from which the
system-level VSIL can be created.

b) Failure modes can be simulated in support of testing the system design.

c) Testscreated for evaluating the system design may be reused in the VSIL to verify that the flight software
has correctly implemented the requirements.

Establishing a VSIL smulator early in the development of the CEV will ensure that the SMA team is actively
involved through testing the system and software from the very beginning of the development effort. Early and
increased involvement by the SMA team gives more time for them for a detailed assessment of the design at it is
created and evol ves.

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 26 rev.a December 2006

ﬂ'ﬁ;

A I""\ I

TRIAKIS CORPORATION

7.0 ACKNOWLEDGMENTS

We would like to thank the NASA Office of Safety and Mission Assurance for funding our investigation under its
Software Assurance Research Program, and the NASA Independent Validation and Veification Facility for
providing oversight and guidance throughout the execution of our project. We also thank Dr. Steven Fredrickson,
Program Manager for the Mini-AERCam project, for providing us with the Mini-AERCam design documentation

and flight software, and for his continued interest and support throughout — and following the completion of — our
effort.

8.0 REFERENCES

[1] Haapanen P, Helminen A, “Failure Mode and Effects Analysis of Software-Based Automation Systems,” Helsinki, Finland,
August 2002, STUCK-YTO-TR 190, ISBN 951-712-585-2, http://www.frmeainfocentre.comy/handbooks/softwarefmea. pdf

[2] Feather, M., Cornford, S., Moran, K., “Got Risk? A Risk-Centric Perspective for Spacecraft Technology Decision-
Making,” Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, California, February 2004,

[3] Boehm, B.W. “Software Engineering.” |EEE Transactions on Computer. 1976: SE-1(4): 1226-1241.

[4] Tassey, G. The Economic Impacts of Inadequate Infrastructure for Software Testing. National Institute of

[5] Leveson, N.G. “Safeware - System, Safety and Computers”. Addison Wesley. 1995.

[6] Leveson, N.G. “The Role of Software in Spacecraft Accidents.” AIAA Journal of Spacecraft and Rockets, Val.
41, No. 4, July 2004.

[7] Dabney, J.B. “Return on Investment of Independent Verification and Validation Study Preliminary Phase 2B
Report.” Software Assurance Research Program Results Web Site. NASA V&V Fadility. Fairmont, West

__

[8] Bennett, T.L., Wennberg, P.W., The Use of a Virtual System Smulator and Executabl e Specifi cations to Enhance Software
Validation, Verification, and Safety Assurance — Final Report; Software Assurance Research Program Results web site,

|
Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
CAGE Code: 1XRC3 27 rev.a December 2006

http://www.fmeainfocentre.com/handbooks/softwarefmea.pdf
http://hdl.handle.net/2014/38292
http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://sarpresults.ivv.nasa.gov/ViewResearch/289/24.jsp
http://sarpresults.ivv.nasa.gov/ViewResearch/282/32.jsp

