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Abstract
Reliance on analysis alone to evaluate the effect of failure modes untestable in an integration lab setup will not

fully ameliorate the added risks due to ever-increasing system complexities and the use of intelligent behavior in
software designs.  Few would argue that evaluating system behavior through dynamic testing in its native target
environment is the best method of verification, however, this is almost always infeasible for NASA space hardware.
In this study we simulated the NASA Mini-AERCam nanosatellite, running its uninstrumented flight software, in its
orbital environment.  We then demonstrated how a high-fidelity virtual environment simulation can be used for
empirical assessment  of system and software  behavior in response to enhanced system and component  failure
conditions.  Failure-mode testing of  the Mini-AERCam controlled by its flight software revealed dynamics and
behaviors not  discovered  in prior failure  modes and  effects analysis efforts.   These  results  suggest  improved
mitigation strategies for recovery of the Mini-AERCam experiencing such a failure, and design modifications with
the potential for improving controllability in the presence of such a failure.

1.0 INTRODUCTION

Failure Modes and Effects Analysis (FMEA) is a primary tool used by NASA Safety & Mission Assurance (SMA)
teams to evaluate the behavior of complex systems in response to operational failures, and to develop operational
strategies for mitigating the risk of undesirable consequences of failure conditions.  

This document has been developed in support of a Center Initiative research project funded by the NASA Software
Assurance Research Program (SARP) beginning in fiscal year 2004.  We have created a virtual system integration
laboratory (VSIL)  simulation  of  the  Johnson  Space  Center  Mini-AERCam (MAC)  nanosatellite  from project
documentation to explore the concept of failure mode effects (FME) testing.  

The Mini-AERCam VSIL supports execution  and test  of  the flight  software  without  the need for  external test
equipment or  other hardware.  As such, it provides an ideal tool for software quality assurance (SQA) groups to
improve their effectiveness by conducting software testing rather than relying exclusively on analysis tools and
process monitoring.  This domain has historically been inaccessible to them due to the high cost of procuring their
own system integration lab (SIL), and limited availability of project-level SILs for their use.  

With the opening of the flight software (FSW) testing domain to SQA teams using a VSIL, some of the unique
capabilities of this virtual environment may be applied to ease, complement, or supplant laborious analysis activities
like failure modes & effects analysis (FMEA).  Failure modes may be modeled as intrinsic characteristics of parts
within the virtual environment that can be manifested as desired during the execution of test scenarios.  We refer to
these as “enhanced” failure modes because they are generally difficult or cost-prohibitive to produce in a hardware
SIL, but readily achievable in a virtual environment simulator.  

Invoking failures in simulated parts during test most closely mimics how the FSW would encounter such an event in
an operational setting.  Observing/measuring the behavior of the FSW and system in response to a failure condition
is the surest way to verify conformance to a requirement.  This ability confers less need for reliance on analysis, and
more flexibility and realism in the evaluation of the effects of failure modes.  For this effort, our selection of failure
modes was drawn from the list of those analyzed as part of the Safety and Mission Assurance (SMA) team's Mini-
AERCam FMEA activity.  Despite advances in analysis methodologies, reliance on analysis alone to evaluate the
effect of failure modes untestable in an integration lab setup will not fully ameliorate the risk added due to increased
complexity.  Supplementing analysis with empirical verification of the system’s response to anomalous conditions
(initiated by ionizing radiation, component failures, system failures, et al) may be the best approach to realizing a
high level of assurance for this project.  
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The research effort  described in this report was conducted under a grant from the NASA Office of  Safety and
Mission  Assurance –  Software  Assurance Research  Program.   Co-Investigator  Paul  Wennberg  developed  the
simulation tool used in this investigation.  

2.0 BACKGROUND

2.1 Failure Modes & Effects Analysis

Failure Modes & Effects Analysis has a long, successful history dating back to the development of United States
Military Procedure MIL-P-1629, a few years following the end of World War II.  The first major NASA use of
FMEA was on the Apollo program in the early 1960s and following publication by several professional societies of
formal procedures for its use, FMEA began to see wide-spread adoption throughout the commercial sector in the
1970s.  

FMEA  was  originally  developed  to  help  improve  the  reliability  of  hardware  systems  and  soon  evolved  to
incorporate  prioritization of  failure  modes  according to criticality (FMECA).   With the increasing reliance on
computers to control hardware systems, it became apparent that this technique could be advantageously applied to
the analysis of the effects of software failure modes (SFMEA).  Haapanen & Helminen provide a recent overview of
FMEA application to software systems in their 2002 paper for the Finnish Radiation and Nuclear Safety Authority
[1].

2.2 Defect and Hazard Detection

New complex embedded systems are quick to take advantage of the unrelenting pace of advancement in computer
hardware performance and capacity.   This increase  in  hardware capability comes  with  a  considerably greater
increase in the functionality and complexity of the software in control.  The development of methods and tools used
to create, verify, and validate controlling software have been hard pressed to keep up with the unremitting advances.

This software complexity growth produces an exponential increase in the software state space.  As a result, we have
long since passed the point where the total software state space can be economically verified, and rely on methods of
prioritizing states  and failure  modes  to  investigate  according to  criticality,  probability,  and risk.   One of  the
promising methodologies developed at JPL by Feather et al is called Defect Detection and Prevention (DDP).  

DDP is a tool  that helps guide the decision-making process early in the development process.  In the words of
Feather et al., “This is an important but  challenging time of the life cycle.  It is important because these early
decisions have the most leverage to influence the development to follow. It is challenging because information on
which to base those decisions is incomplete and uncertain, and in the case of advanced technologies and systems
there is little past experience from which to extrapolate” [2].  Establishing the correctness of the system design early
in a project not only improves software, safety, and mission assurance, but also can have a substantial impact on
development and life-cycle costs (see: Cost of Defect Propagation).  

Use of a tool such as DDP early in a project can be a highly effective means of establishing a prioritized list of
failure modes to be manifested for testing a system's response in support of an FMEA exercise.  Testing the system
in a VSIL produces data that informs the development of mitigation strategies to deal with operational failures.

3.0 METHODOLOGY

Our research was dependent upon the use of a simulation of the MAC in its orbital environment with sufficient
fidelity to run the FSW object code, with part models closely mirroring those of MAC and having failure modes that
may be invoked under test control.  Since no simulator with these capabilities existed, a major part of our effort was
spent developing one using Triakis' IcoSim simulator application.  Experience has shown that the most efficient
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Having developed the MAC simulator, we then extended it to include a shuttle orbiter virtual environment (VE)
simulation  within  which  the  virtual  Mini-AERCam  operates  during software  testing.   This VE  includes  GPS
satellites, the shuttle orbiting the Earth orbiting the Sun, orbital dynamics, inertial effects,  etc.  We then added
failure modes to selected parts, and developed tests based on selected failure modes analyzed in the MAC FMEA
document.  

3.1 Enhanced Failure Modeling

We define “Enhanced Failures” as those that are generally difficult or  cost  prohibitive to produce in a realistic
manner, in a system integration laboratory facility – but are readily created in a virtual system integration laboratory
(VSIL)  environment  simulator.  The following  types  of  verification  are  typically very difficult  to realistically
evaluate in a physical laboratory environment, but relatively easy in a high-fidelity virtual environment: 

1. Verifying the response of controlling software to the effects of single or burst event ionizing radiation on
one or more hardware components (e.g. FPGA, RAM, CPU internal bit/state changes, latch-up, etc.). 

2. Verifying the software response to single or combined hardware component failures/degradations during
critical software task execution (e.g. FPGA internal failures, D/A & A/D bit failures, telemetry & control
link noise interference or component failures, sensor failures, propulsion system component failures, loss
of inertial reference axis, etc.). 

3. Verifying the software response to single or multiple system-level component failures, degradations, or
unexpected behaviors during critical software task execution (e.g. loss/degradation of single/multiple
GPS satellite signal(s), loss of command link during manual control, etc.). 

The failures we modeled in the MAC were of the type identified in item 2 above, and selected among the failures
analyzed  in the  MAC FMEA report  (filename:  “FMEA Mini  AERCam Demonstrator.doc”).   We selected  the
following failure mode categories to implement for our project:

1. Internal propulsion leak venting through seam in Mini-AERCam case  
2. Thruster stuck open or closed  
3. MEMS rate gyro total failure  
4. MEMS rate gyro axis gain & bias offset failure  
5. Isolation valve unresponsive  

In the VSIL simulator, we implemented failure modes at the part level as functions within the part that may be called
under test control to alter part behavior (e.g. manifest failures) when desired.  Parameters are typically passed to the
function to control activation/deactivation of the failure, to select different characteristics of the failure, to control
the severity of degraded mode failures, etc.  For example the following 'C++' function within the MEMS rate gyro
part is used to manifest rate gyro failures:

void MEMS::SetFailureMode(int axis, double offset, double gain)
{
  error[axis].offset  = offset;
  error[axis].gain    = gain;

  if((gain == 0) && (offset == 0)) // This forces the MEMS to be unresponsive
    MEMS_INOP = TRUE;
}

This is the code that implements the gain and offset bias errors for the rate gyro Roll Axis (the value of parameter
'ffrate[ROLL]' is driven by the simulator inertial model):

  rg[ROLL].rate = ffrate[ROLL] * error[ROLL].gain + error[ROLL].offset;
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When the MEMS_INOP flag is set,  the rate gyro outputs to the FPGA that reads its values are disabled.  The
complementary function, “MEMS::ClearFailureModes(),” is called to reset the gain bias to 1 and offset bias to 0 for
all axis', and to reset the MEMS_INOP flag to FALSE, thereby restoring nominal operation to the rate gyro.

Similarly, “SetFailureMode()” functions have been programmed into the parts that implement the behavior of the
thrusters, and the isolation valve.  

3.2 Failure Mode Testing

Our selection of failure modes to test was based on the failure modes that were evaluated in the MAC FMEA report
produced by the Johnson Space Center SMA team in 2002 (filename: “FMEA Mini AERCam Demonstrator.DOC”).
Of those evaluated in the FMEA report, we chose failure modes  whose analysis had been conducted at a high
abstraction level, that we felt might produce interesting results through evaluation in more detail.  For example,
there are 12 micro thrusters on  the MAC that are independently controlled by the FSW.  The FMEA analysis
assesses them as each thruster within the group controlling the axis having the same effect.  We felt that testing
individual thruster failures might allow a better assessment of MAC behavior than the analysis could provide.  

Failure mode testing is initiated from a program that is executed when the MAC simulator starts.  To maintain
consistency, we ran each test sequence independently beginning after the MAC initial conditions were set up during
simulator start-up.  Each test begins by commanding the MAC to move from its starting position, to a destination
waypoint and attitude, through the use of the MAC auto-move function.  Failure modes are manifested while the
MAC attempts to fly the commanded profile,  and position and attitude data are logged to a file at one second
intervals.  To establish a basis for comparison, each test profile is repeated without manifesting failure modes so that
data from a nominal MAC flight may be collected.  

4.0 RESULTS

Meeting our objectives required that we first develop a MAC VSIL simulator capable of running the unmodified
executable MAC FSW object code.  As the development of the simulator is not the focus of this effort, discussion of
the details of this aspect of our effort will not be included herein.  The authors, however, will be pleased to discuss
this subject in some detail with those interested.  

Having developed a VSIL simulator of the MAC, we employed it to address our following three primary objectives:

A) To be able to independently test (rather than rely solely on FMEA) software behavior in response to failure
modes.  

B) To create & test failure mode scenarios in the virtual environment that are not practical in a HW integration
test lab .  

C) To evaluate if project SQA can be more effective by complementing FMEA with flight SW testing.  

The results of our effort  are presented in the following paragraphs, ordered by objective.   Access  to the VSIL,
documentation, and data produced during this project effort may be obtained with permission from the NASA IV&V
Facility.  Tests and test results are documented in the Flight Software Test Document for the JSC Mini-AERCam
Nanosatellite (SARP-CI04-77-001b).  

4.1 Objective A
To be able to independently test (rather than rely solely on FMEA) software behavior in response to failure modes.  

Having developed the MAC VSIL simulator, the next step was to program the MAC components involved, with
failure modes we selected based on the FMEA report.  Table 1 lists the failure modes we implemented in the
simulated MAC.  The Reference (Ref #), Failure Mode (FM #), and Page Number (Page #) columns are provided as
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cross  references  into the FMEA report to help correlate the listed failure mode tests with those failure modes
analyzed.  

Table 1: Failure Modes Implemented

Test Ref # FM # Page # Failure Mode Description

1. 00010 00010 1 External Leakage (Propellant leak causing thrust)

2. 00001 00080 17 Stuck thruster: Thruster 1 fails OPEN

3. 00001 00080 17 Stuck thruster: Thruster 1 fails CLOSED

4. 00001 00080 17 Stuck thruster: Thruster 2 fails OPEN

5. 00001 00080 17 Stuck thruster: Thruster 2 fails CLOSED

6. 00001 00080 17 Stuck thruster: Thruster 3 fails OPEN

7. 00001 00080 17 Stuck thruster: Thruster 3 fails CLOSED

8. 00001 00080 17 Stuck thruster: Thruster 4 fails OPEN

9. 00001 00080 17 Stuck thruster: Thruster 4 fails CLOSED

10. 00001 00080 17 Stuck thruster: Thruster 5 fails OPEN

11. 00001 00080 17 Stuck thruster: Thruster 5 fails CLOSED

12. 00001 00080 17 Stuck thruster: Thruster 6 fails OPEN

13. 00001 00080 17 Stuck thruster: Thruster 6 fails CLOSED

14. 00001 00080 17 Stuck thruster: Thruster 7 fails OPEN

15. 00001 00080 17 Stuck thruster: Thruster 7 fails CLOSED

16. 00001 00080 17 Stuck thruster: Thruster 8 fails OPEN

17. 00001 00080 17 Stuck thruster: Thruster 8 fails CLOSED

18. 00001 00080 17 Stuck thruster: Thruster 9 fails OPEN

19. 00001 00080 17 Stuck thruster: Thruster 9 fails CLOSED

20. 00001 00080 17 Stuck thruster: Thruster 10 fails OPEN

21. 00001 00080 17 Stuck thruster: Thruster 10 fails CLOSED

22. 00001 00080 17 Stuck thruster: Thruster 11 fails OPEN

23. 00001 00080 17 Stuck thruster: Thruster 11 fails CLOSED

24. 00001 00080 17 Stuck thruster: Thruster 12 fails OPEN

25. 00001 00080 17 Stuck thruster: Thruster 12 fails CLOSED

26. 30 30 5 Isolation Valve failure OPEN: Not responsive to CLOSE command

27. 40 40 7 Isolation Valve failure CLOSED: Not responsive to OPEN command

28. 00900 00900 67 Faulty rotational gyro: Incorrect  Roll Rate: Low offset; Low gain

29. 00900 00900 67 Faulty rotational gyro: Incorrect  Roll Rate: Low offset; High gain

30. 00900 00900 67 Faulty rotational gyro: Incorrect  Roll Rate: High offset; Low gain
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Test Ref # FM # Page # Failure Mode Description

31. 00900 00900 67 Faulty rotational gyro: Incorrect  Roll Rate: High offset; High gain

32. 00900 00900 67 Faulty rotational gyro: Incorrect  Yaw Rate: Low offset; Low gain

33. 00900 00900 67 Faulty rotational gyro: Incorrect  Yaw Rate: Low offset; High gain

34. 00900 00900 67 Faulty rotational gyro: Incorrect  Yaw Rate: High offset; Low gain

35. 00900 00900 67 Faulty rotational gyro: Incorrect  Yaw Rate: High offset; High gain

36. 00900 00900 67 Faulty rotational gyro: Incorrect  Pitch Rate: Low offset; Low gain

37. 00900 00900 67 Faulty rotational gyro: Incorrect  Pitch Rate: Low offset; High gain

38. 00900 00900 67 Faulty rotational gyro: Incorrect  Pitch Rate: High offset; Low gain

39. 00900 00900 67 Faulty rotational gyro: Incorrect  Pitch Rate: High offset; High gain

40. 00900 00900 67 Faulty rotational gyro: NO Signal

We met this objective by successfully implementing the failure modes listed in table 1, and demonstrating that they
may be manifested during test of the FSW.  

4.2 Objective B
To create & test failure mode scenarios in the virtual environment that are not practical in a HW integration test
lab .  

4.2.1 Project-level Test Environments
Essentially all of the failure modes in table 1 may prove difficult and/or economically challenging to create and test
realistically in a hardware integration test laboratory.  The MAC is designed to operate in a space environment under
micro-gravity conditions, with its 12 micro-thrusters oriented to provide 6 degrees of freedom (DOF) (3 attitudinal,
3 directional) of control over its movement.  Two separate integration/test environments have been created by the
development project to test the MAC:

1. The first MAC test environment comprises a massive, granite air-bearing table with a cradle to hold the
MAC prototype.  The cradle supplies the MAC with propellant and provides the air cushion required to
float  the assemblage during operation.   This has proven  helpful  for  validating much of  the Guidance,
Navigation, & Control algorithms but is limited by its inability to provide more than 3 DOF (2 translational
+ 1 yaw).  

2. The second test environment is a virtual orbital environment simulator providing 6 DOF movement with a
hardware-in-the-loop (HITL) connection to the MAC as well as a GPS signal generator.  This supports the
validation of algorithms developed for 6-DOF control, inertial & relative automatic altitude hold, automatic
point-to-point maneuvering, relative GPS navigation, and GPS-based translation hold.  

Clearly, the goal of these two test set-ups was not principally that of failure mode testing, but of MAC hardware and
algorithm development.  Of these two test environments, the second should support more realism in test scenario
creation with its ability to provide 6 DOF mobility.  However, test set-ups incorporating HITL generally come with
a high price tag and other limitations that serve to restrict the number that can be produced and, correspondingly,
access by non-development personnel such as SMA and IV&V teams.  

4.2.2 VSIL Environment
The VSIL environment is purely virtual, i.e. it does not require the use of HITL to run the FSW, to provide sensor
stimulus to the MAC, or for any other purpose.  This VSIL models the MAC hardware and its orbital environment at
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the component level, and with sufficient fidelity to run the uninstrumented MAC FSW object code.  Fidelity of each
component model  has been  developed according to what is required for the purposes of our investigation.  For
example, the PowerPC750 CPU part is modeled with a relatively high level of fidelity (as required to run the FSW
object) while components such as the rate gyro, FPGAs, etc. are modeled at a somewhat higher level of abstraction.

4.2.3 Failure Mode Test Results
As discussed in the methodology section, failure mode testing is initiated from a program that is executed when the
MAC simulator starts.  Each test begins by commanding the MAC to move from its starting position to a destination
waypoint and attitude, through the use of the MAC auto-move function.  Failure modes are manifested while the
MAC attempts to fly the commanded profile,  and position and attitude data are logged to a file at one second
intervals.  To establish a basis for comparison, each test profile is repeated without manifesting failure modes so that
data from a nominal MAC flight may be collected.  All tests presented here were run on the VSIL executing the
FSW object code.  All position measurements are in meters.  Attitude waypoint numbers are in degrees, and plotted
data is given in sine of the axis angle.  

4.2.3.1 Leaky Gas Test
The Leaky Gas failure mode is described in the FMEA report as: “External Leakage” which may result in:

• Degraded or loss of GN2 flow to thrusters. 
• Possible uncommanded motion due to loss of fuel resulting in inability to arrest motion. 
• Avionics software commands Safe Mode if uncommanded motion detected. 
• Degraded or loss of ability to control free-flier motion. 
• Probable loss of Sprint mission objective.
• Potential loss of free-flier. 
• Potential injury/damage to crew member or Orbiter. 

We have chosen to manifest this failure as one that causes a small (0.031lbs) net thrust at the edge of the Mini-
AERCam shell, tangential to thruster 1 & 2 cluster on the X axis, and parallel to the Y-axis in the -Y direction.  In
the absence of any corrective thruster action, this leak causes the MAC to rotate about the Z-axis (Yaw).  The test
may be easily adjusted to change the amount of thrust, the direction of the thrust, and the axis about which it is
applied.  Enhancements to the fidelity of this failure model would include loss of propellant and drop in pressure
commensurate with location and severity of leak.  

We ran this test using profile #1 with the Mini-AERCam (MAC) starting at rest at x,y,z location -25, 0, 0.  Profile #1
commands the MAC to move to waypoint -20, -10, 5 and attitude 0, -40, 0.  The test records 30 seconds of position
and attitude data before manifesting the leaky gas failure, and another 7 min 30 sec of data with the failure present.
We also ran the test without invoking the failure mode in order to collect 8 minutes of nominal data for comparison.
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The data in figure 1 show that the MAC maintained a position profile fairly close (within 2.5m) to nominal in the
presence of the thrust caused by the leaky gas failure mode while flying profile #1.

The attitude data in figure 2 show that the MAC FSW was unable to maintain a steady attitude in the presence of the
parasitic thrust produced by the leaky gas fault while flying profile #1.

4.2.3.2 Stuck Thruster Tests

The Stuck Thruster failure mode is analyzed by axis and described in the FMEA as “One of the x,y,z axis Thrusters
Fails from the Pair Thrusters (x = Jet 1, Jet2), (x = Jet 7, Jet 8 Fails) ” which may result in:

Triakis Corporation 16149 Redmond Way, Suite 177 Redmond, WA 98052-3834
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FIGURE 1: LEAKY GAS TEST POSITION PLOT - PROFILE #1
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FIGURE 2: LEAKY GAS TEST ATTITUDE PLOT - PROFILE #1
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• Messages and audible alarm at control station for Thruster loss.
• Loss of ability to control free-flyer motion about axis.
• Free-flyer in free drift. 
• Loss of Mini AERCam Demonstrator mission objective. 
• Possible injury/damage to EVA crew member or Orbiter. 

The analysis also looked at failure of pairs of jets within each cluster, however, the analysis was not broken down to
the  failure  of  individual  thrusters,  and  further  to  failure  state  (OPEN/CLOSED).   The  MAC  thrusters  are
individually controlled by the FSW and the probability of a single thruster failure is likely higher than having a pair
fail  together.  Figure 3 presents a diagram of the thruster  configuration for  reference.  The rotational axis'  are
mapped as follows: X == ROLL; Y == PITCH; Z == YAW.  

We manifested this failure by commanding the thruster  to the failed state (OPEN or  CLOSED) and making it
unresponsive to commands from the FSW.

We ran the first test from rest position -25,0,0 directly to profile #3, collecting 60 secs of nominal data, and then
failing each of the 12 thrusters first OPEN and the CLOSED for 60 secs each while collecting data.  Each thruster
was restored to nominal functioning before proceeding to test the next one and at the end of  testing all thrusters, we
collected another 60 secs of nominal data.  A total of 26 minutes of data were collected and a comparison run of 26
minutes down the same profile with no failures manifested was made.  The destination waypoint for profile #3 is
Pos: 5,15,-5 and Att: 0,0,0.
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As you can see from figure 4, the FSW flew close to the nominal profile for the first 540 seconds despite the thruster
failures.  At 540 seconds, thruster 5 failure mode tests begin with the thruster failing OPEN for 60 seconds and then
CLOSED for 60 seconds.  During the thruster  5 failures, the MAC begins to depart the path to its commanded
position waypoint – principally in the 'y'  and 'z' axis'.  Whether this occurs in response to the previous thruster
failures or the failure modes of thruster 5 wasn't determined but after the 840 second mark, the MAC begins to slow
its departure and appears to head back to the commanded waypoint.  

Figure 5 shows a plot of  the MAC attitude during the course of  running profile #3 from the rest position.  It's
interesting to note that the data show the FSW is able to control the attitude fairly well about the pitch and yaw axis'
in the presence of thruster failures, but not the roll axis.  Since this is a plot of the sin of the axis angle, oscillation
indicates that the MAC is rotating or rocking about the axis.
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FIGURE 4: STUCK THRUSTER TEST POSITION PLOT - PROFILE #3
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FIGURE 5: STUCK THRUSTER TEST ATTITUDE PLOT - PROFILE #3
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Expanding the period about the point where the MAC changes course (at 540 seconds), figure 6 shows that the
MAC had been rolling during the thruster 4 failures but settled down at a roll angle of about 90 degrees as it entered
the thruster 5 failure mode test period.  

4.2.3.3 Isolation Valve Tests

The Isolation Valve failure mode is described in the FMEA as “Fails Open” or “Fails Closed” which may result in:

• First failure: Inability to isolate GN2 supply from remainder of propulsion plumbing and components 
• Second failure: Thruster fails on or computing upset resulting in uncommanded motion.
• Unable to arrest motion 
• Loss of Sprint mission objective
• Potential injury/damage to EVA crew member or Orbiter. 

Mitigation of this possible failure mode is handled in the Safe Mode FSW module.  Unfortunately, this module was
not completed at the time the MAC project was canceled and therefore no commands are sent to the isolation valve
by the FSW in response to erratic MAC behavior.  While we did implement failure modes in the isolation valve part,
there was no useful test to evaluate the FSW behavior in controlling the valve.  

Valve failure was implemented as causing the valve to be unresponsive to either the OPEN or CLOSE signal.  

4.2.3.4 MEMS Rate Gyro Tests

The Rate Gyro failure mode is described in the FMEA as “Incorrect or no signal” which may result in:

• Avionics software detects discrepancy between commanded and measured rates and commands Safe Mode,
closing the iso valve

• Loss of ability to control free flyer motion
• Free flyer in free drift
• Loss of Sprint Mission objective
• Possible injury/damage to EV crew and Orbiter 
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FIGURE 6: STUCK THRUSTERS 4 & 5 TEST ATTITUDE PLOT - PROFILE #3
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We implemented three types of failure modes in the simulated MEMS rate gyroscope part.  Total failure of the
MEMS gyro is accomplished by configuring it to be unresponsive to the multiplexer commands coming from the
FPGA controller.  Variable gain and offset biases may also be introduced into the output of each axis of the gyro.  

We conducted three tests on the FSW object code to assess MAC behavior in the presence of rate gyro failures.  The
first test commands the MAC to fly profile #3 (Pos: 5,15,-5 and Att: 0,0,0), and begins by collecting 60 secs of
nominal data before causing any RG failures.  Then each axis is failed in turn with the following sequence: offset =
0.2 , gain = 0.5; offset = .2, gain = 1.5; offset = 0.4, gain = 0.5; offset = 0.4, gain = 1.5.  Beginning with the roll axis,
each setting is run for 60 secs before restoring the axis to nominal operational parameters and proceeding to the
pitch and then yaw axis.  The end of the test collects another 60 secs of nominal data.  Total duration of the test is 14
minutes.  A nominal profile was run for 14 minutes for comparison with the test data.  

Figure 7 shows that after about 6 minutes of bias failures being induced, the MAC appears to have abandoned flying
to the commanded waypoint and departed from the nominal path in all three axis'.  

The plot in figure 8 shows the attitude of the MAC during the RG failure tests.  Not surprisingly, the MAC looses its
ability to maintain attitude stability in the absence of rate gyro information.  As offset  and gain bias faults are
introduced in each axis (beginning at 61 seconds), the ability of the FSW to maintain attitude control is challenged
accordingly.  
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FIGURE 7: RATE GYRO OFFSET & GAIN FAULTS TEST POSITION PLOT - PROFILE #3
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The low offset/low gain roll axis failure mode causes loss of roll stability (seconds 61-120) that improves when the
gain is boosted (secs 121-180), worsens with the high offset/low gain failure (181-240) and improves again with
increasing gain (241-300).  The plot in figure 9 below is an expanded view (61-300 seconds) of the attitude behavior
during this sequence of roll axis bias failure modes.  Note that the time frame of the below chart is relative to the
start of the roll axis bias failure mode tests so the first second above corresponds to the 61st second on the previous
chart.  

The second test was identical to the first except for the insertion of a 10 minute period during which a total RG
failure was commanded immediately prior to invoking the sequence of offset  and gain bias failures.  The total
duration of this test then is 24 minutes.  

The position data for the second test, plotted in figure 10, show that the MAC followed the nominal course very
closely during the total MEMS gyro failure when flying this profile.   As  with the previous test,  however,  the
individual axis offset and gain bias failures caused the MAC to fly away from the nominal route to the waypoint.  
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FIGURE 8: RATE GYRO OFFSET & GAIN FAULTS TEST ATTITUDE PLOT - PROFILE #3
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FIGURE 9: RG ROLL AXIS OFFSET & GAIN FAULTS TEST ATTITUDE PLOT - PROFILE #3
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The attitude plot for this test, shown in figure 11 below, reflects the position stability during the period of total RG
failure, as well as the loss of attitude control during the offset and gain bias fault period.

Given the high degree of attitude stability exhibited by the MAC in the presence of a total RG failure while flying
profile #3, we thought it might be interesting to run the same test while flying a different profile.  Since profile #3
does not incorporate a change of attitude from the 0, 0, 0 position, we hypothesized that with the thrusters firing in
balanced pairs, the MAC could fly to the commanded position waypoint without changing its attitude.  To test this
idea  we  ran the same test  with  profile  #4,  one that commands the MAC to fly to new attitude and position
waypoints.   
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FIGURE 11: RATE GYRO TOTAL FAILURE TEST ATTITUDE PLOT - PROFILE #3
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FIGURE 10: RATE GYRO TOTAL FAILURE TEST POSITION PLOT - PROFILE #3
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From the data in the plot shown in figure 12 above, it is clear that the MAC was unable to follow a nominal course
during the total failure of the RG while flying profile #4.  

The data in the expanded attitude plot in figure 13 shows that the MAC had already stabilized on its new attitude
waypoint before the total gyro failure occurred at 61 seconds.  So it is not necessary for the MAC to be in transition
attitudinally at the time the RG fails, for it to lose attitude control.  Yet it is able to maintain control in the absence of
RG data if the attitude is zero in all axis'.  
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FIGURE 12: RATE GYRO TOTAL FAILURE TEST POSITION PLOT - PROFILE #4
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FIGURE 13: RATE GYRO TOTAL FAILURE TEST ATTITUDE PLOT - PROFILE #4
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Our selection of the offset and gain bias values were arbitrary (and possibly excessive) and applied in combination.
To better quantify how the FSW behaves in response to MEMS rate gyro failure modes, testing of other offset and
gain bias values independent of each other could provide useful information about the sensitivity of the FSW to
errors of this type on a per-axis basis.  It might also be informative to run these tests individually rather than directly
following in sequence.  This way the test of each axis would begin with the MAC attitude under good control and
end by restoring nominal operation of the RG and monitoring how the FSW recovers.  

4.3 Objective C
To evaluate if project SQA can be more effective by complementing FMEA with flight SW testing.  

Our failure mode testing of the MAC FSW produced results that we believe provide a compelling case for the use of
failure mode testing of FSW by the SMA, and/or IV&V teams.  Lets examine how testing the FSW with the failure
modes we selected might have added to the MAC FMEA report.  The Safe Mode application was not implemented
in the FSW build we tested so we were unable to evaluate its behavior for this study.  

a) Leaky Gas Test: The FMEA report lists “Avionics software commands Safe Mode if uncommanded
motion detected.  Degraded or loss of ability to control free-flyer motion.” among the failure effect End
Items.  Our test reveals that the MAC is able to fly within 2.5m of a nominal profile to a programmed
waypoint with a gas leak fault producing 0.26lbs thrust tangential to thruster 1 & 2 cluster on the X axis,
and parallel to the Y-axis in the -Y direction.  In the absence of any corrective thruster action, this leak
causes the MAC to rotate about the Z-axis (Yaw).  

Had Safe Mode been operational during our test, it should have taken control as a result of the
uncommanded motion and the outcome of the flight would likely have differed from what we observed.
Additional tests could be run to create a profile of course deviation vs. leak thrust vectors.  This could be
used to guide decisions on whether or how to retrieve the MAC, dependent upon its distance and number of
waypoints to fly to a safe rendezvous, if it should develop such a failure.  

Further, if the magnitude of parasitic thrust does not exceed the corrective capacity of the thrusters, perhaps
a safe strategy could be developed for the MAC to auto-move to a retrieval point (or even the hanger), and
the remaining propellant vented in a balanced manner (if shutting the iso-valve doesn't stop the leak).
While the mission objectives may be unfulfilled, these measures could improve the likelihood of retrieving
the MAC.  

b) Stuck Thrusters: To evaluate the effect of thruster failures, the FMEA report grouped thrusters by those
controlling the movement about each axis (4 per axis), and assessed the effect of the failure of a single
thruster of the group.  The FMEA indicates that the failure will cause the loss of ability to control the MAC
in the affected axis – leaving the MAC to drift.  

Failure mode testing reveals that the MAC FSW is able to maintain control of the pitch and yaw attitudes
despite each of the thrusters failing open and closed sequentially.  However, the FSW is unable to maintain
roll axis stability during failures of about half of the thrusters (see figure 5).  If pitch and yaw can be
controlled during thruster failures, could roll control be improved to perform similarly through a software
or thruster configuration change?  

In addition to the attitude control dynamics, we observed that during the failures of thruster 5, the MAC
begins to depart the path to its commanded position waypoint – principally in the 'y' and 'z' axis'.  During
the failure tests of thruster 7, the MAC begins to slow its departure and later turns back to the commanded
waypoint.  Is this a consequence of the roll instability?  Will this behavior occur under more realistic failure
scenarios, e.g. one thruster failing rather than all failing sequentially? Additional testing is necessary to
better understand this behavior.
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Characterizing the behavior of the MAC in response to thruster failures may support the development of
effective strategies for responding to failures in a manner that improves the probabilities of recovering the
MAC, or avoiding possible injury to EVA crew-member or orbiter.  

c) Isolation Valve: We implemented the isolation valve part in the MAC VSIL and created a failure mode
that put it into an unresponsive state such that if it was open, it would not respond to commands to close it,
and visa versa.  During our testing of this failure mode, we discovered that commands were not being sent
from the FSW during the test, to the FPGA register controlling operation of the iso-valve.  It turns out that
the Safe Mode application had not been incorporated into this software build.  This was not surprising since
funding for continued Mini-AERCam development was not assured at the time, and was eventually cut.
This finding would certainly be of interest if discovered near the end of the MAC development effort, but it
is unlikely that such an omission would occur.  

d) Rate Gyro Offset/Gain Bias Errors: It is no wonder that the MAC loses attitude stability when faced with
rate gyro bias errors, particularly those related to offset of a significant magnitude.  The FSW demonstrated
an impressive ability to continue flying to its commanded translational waypoint despite bias faults in the
roll axis rate gyro signal.  When pitch axis bias failures are introduced, however, the MAC departs the path
to its commanded position waypoint in all three translational axis' (figure 7).  

The FMEA report indicates that the MAC should transition to Safe Mode upon detection of a discrepancy
between commanded and measured rates, and close the iso-valve.  It recommends attempting to reacquire
the MAC, presumably under manual control.

It may be that certain rate gyro bias failures develop over time, in which case the FSW may be able to
detect a discrepancy before the point of attitude instability is reached.  Failure mode testing can help
determine that point empirically, and lead to recommendations about reporting rate discrepancies, and
when to abort a mission and return to the hanger while still within safe attitude controllability limits.  

Another observation from the test results is that the MAC is less sensitive to gain bias failures than offset
bias failures.  This may or may not warrant separate strategies for dealing with each failure type.  Since
these types of failures fall into the realm of degraded performance, it may be possible to compensate for the
bias by adding a calibration function to the software that could be exercised when a rate discrepancy has
been detected.  

Failure management strategies may be further refined based on the observation that the MAC reacts
differently to bias failures in different axis'.  

e) Rate Gyro Total Failure: The total failure of the MEMS rate gyro part was modeled by disabling its
response to requests for data from the controller (processor FPGA) part.  In the FMEA report, this was
classified in the same category as the rate gyro bias failures and, accordingly, the MAC responds by
switching to Safe Mode and closing the iso-valve.  

Testing with this failure mode revealed that when the MAC attitude was at its zero reference orientation, it
was able to auto-move to a translational waypoint provided no attitude change was commanded (see first
11 minutes of figure 10).  This may suggest a response strategy that takes the MAC attitude into account at
the time of rate gyro failure.  Since the MAC behaves differently in the face of a total failure, it makes
sense to classify it separately from rate gyro bias failures.  

In all cases, testing the behavior of the FSW in response to failures provides quantitative, empirical information that
promotes an improved understanding of the MAC dynamics under anomalous conditions.  The test scenarios we
created were intended to stress the system to elicit behaviors that may be candidates for more detailed investigation.
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Evaluate methods of gathering metric data on dynamic aspects of a software program only possible (or at least a lot
easier) in a virtual environment.  

In  addition  to running the failure mode tests  developed  for  assessing the MAC FSW,  we  configured the test
programs to gather some SW execution metrics of interest.  None of the metrics gathered required instrumentation
of the code itself.  The metric data files are included as part of the project documentation submitted to the NASA
IV&V Facility and may be accessed with permission from the research authority at the facility.  

a) Software Path Coverage: The software  path  coverage  report  shows  all  conditional  jump  (or  call)
assembly code instructions and identifies whether a condition caused a jump or no jump (execution fell
through  to the  following  instruction) during execution.   Typically,  test  development  would  not  be
considered complete until all code paths are exercised.  Table 2 shows an excerpt from the MAC FSW
path coverage report.

Table 2: SW Path Coverage Report Excerpt
 NO

 ADDRESS JUMP JUMP SYMBOL OFFSET
 001bc434      x     x     gnc_collect_rate_data + 1c hex
 001bc4c0            x     gnc_collect_rate_data + a8 hex
 001bc4dc      x     x     gnc_collect_rate_data + c4 hex
 001bc4e4      x           gnc_collect_rate_data + cc hex
 001bc560      x     x     gnc_collect_rate_data + 148 hex
 001bc6d8      x           gnc_resume_setup + b8 hex
 001bc720      x     x     gncexec_cmd_switch + 44 hex
 001bc724      x     x     gncexec_cmd_switch + 48 hex
 001bc72c      x     x     gncexec_cmd_switch + 50 hex
 001bc730      x     x     gncexec_cmd_switch + 54 hex
 001bc740            x     gncexec_cmd_switch + 64 hex
 001bc74c      x           gncexec_cmd_switch + 70 hex
 001bc774            x     gncexec_cmd_switch + 98 hex
 001bc778      x     x     gncexec_cmd_switch + 9c hex
 001bc780            x     gncexec_cmd_switch + a4 hex
 001bc788      x           gncexec_cmd_switch + ac hex
 001bc7a8      x     x     gncexec_cmd_switch + cc hex
 001bc7ac            x     gncexec_cmd_switch + d0 hex
 001bc7b4      x           gncexec_cmd_switch + d8 hex
 001bc7dc      x     x     gncexec_cmd_switch + 100 hex
 001bc7e4      x     x     gncexec_cmd_switch + 108 hex
 001bc7ec            x     gncexec_cmd_switch + 110 hex
 001bc7f8      x     x     gncexec_cmd_switch + 11c hex
 001bc7fc      x     x     gncexec_cmd_switch + 120 hex
 001bc804            x     gncexec_cmd_switch + 128 hex
 001bc80c      x           gncexec_cmd_switch + 130 hex
 001bc820      x           gncexec_cmd_switch + 144 hex
 001bcf18      x     x     gncexec_cmd_switch + 83c hex
 001bcf6c      x           gncexec_cmd_switch + 890 hex
 001bd0d4      x     x     gncexec_cmd_switch + 9f8 hex
 001bd2a8      x     x     gncexec_cmd_switch + bcc hex
 001bd2b4            x     gncexec_cmd_switch + bd8 hex
 001bd2bc      x           gncexec_cmd_switch + be0 hex
 001bd340      x           gnc_check_and_make_fireinput + 30 hex
 001bd7e4      x     x     gnc_check_and_make_fireinput + 4d4 hex
 001bd860      x     x     gnc_check_and_make_fireinput + 550 hex
 001bda10      x           gncexec + 54 hex
 001bdbc0      x     x     gncexec + 204 hex
 001bdc84            x     gncexec + 2c8 hex
 001bdca4      x           gncexec + 2e8 hex
 001bdee8      x           gncexec + 52c hex
 001bdf4c      x     x     gncexec + 590 hex
 001bdf88      x     x     gncexec + 5cc hex
 001bdfa0      x     x     gncexec + 5e4 hex
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b) Software Code Coverage: The  software  code  coverage  report  calculates  the  percentage  of  code
executed during the test run.  For this report, the MAC was commanded to move from its initialized
position to the waypoint and attitude of profile #1.  No failure mode tests were run during the collection
of this report.  Our report shows that 17% (763 lines of code in aercam_gnc()) of the GNC code was
executed during this auto-move exercise.  Ideally, tests would continue to be written until 100% coverage
was achieved.  

c) Software Subroutine Call & Interrupt: This report logs the time of all subroutine calls, interrupts, and
returns made during program execution.  These data are useful for  analyzing and debugging program
control flow,  and may find use by SMA as a means of observing task and interrupt timing & nesting
behavior.   Table  3  presents  an  excerpt  of  this  report  showing  an  interrupt  occurring  during  the
taskDelay() call.

Table 3: SW Subroutine Call & Interrupt Report Excerpt

Time Address Subroutine Call / Interrupt
60.211105 001c4d7c bl  -> 002784c0 [taskDelay] <r1 = 00c574c0>
60.211105 00278674   bl  -> 0027c008 [windDelay] <r1 = 00c574a0>
60.211106 0027c0dc     bcctrl  -> 0025d850 [qPriBMapRemove] <r1 = 00c57480>
60.211106 0025d880       bl  -> 0025bb6c [dllRemove] <r1 = 00c57470>
60.211106 0025bb9c       bclr  -> 0025d884
60.211107 0025d8a0       bl  -> 0025d7a8 [qPriBMapClear] <r1 = 00c57470>
60.211107 0025d7e8       bclr  -> 0025d8a4
60.211107 0025d8b8       bl  -> 0025d7ec [qPriBMapHigh] <r1 = 00c57470>
60.211107 0025d808         bl  -> 0023c390 [ffsMsb] <r1 = 00c57460>
60.211107 0023c398         bclr  -> 0025d80c
60.211108 0025d81c         bl  -> 0023c390 [ffsMsb] <r1 = 00c57460>
60.211108 0023c398         bclr  -> 0025d820
60.211108 0025d84c       bclr  -> 0025d8bc
60.211108 0025d908     bclr  -> 0027c0e0
60.211109 0027c144     bcctrl  -> 0025d9d4 [qPriDeltaPut] <r1 = 00c57480>
60.211110 0025da2c       bl  -> 0025bb24 [dllInsert] <r1 = 00c57460>
60.211110 0025bb5c       bclr  -> 0025da30
60.211110 0025da80     bclr  -> 0027c148
60.211110 0027c178   bclr  -> 00278678
60.211110 00278678   bl  -> 002616a0 [windExit] <r1 = 00c574a0>
60.211112 002716e4     bl  -> 001fc460 [_savegpr_21_l] <r1 = 00c58cf0>
60.211113 001fc490     bclr  -> 002716e8
60.211113 0027175c     bl  -> 0027d9c8 [workQDoWork] <r1 = 00c58cf0>
60.211113 0027d9d4       bl  -> 001fc474 [_savegpr_26_l] <r1 = 00c58cd0>
60.211113 001fc490       bclr  -> 0027d9d8
60.211113 0027d9d8       bl  -> 0023fbd8 [__errno] <r1 = 00c58cd0>
60.211113 0023fbe0       bclr  -> 0027d9dc
60.211114 0027da54       bl  -> 0023fbd8 [__errno] <r1 = 00c58cd0>
60.211114 0023fbe0       bclr  -> 0027da58
60.211114 001fc41c     bclr  -> 00271760
60.211114 00271760     bl  -> 001efb30 [intLock] <r1 = 00c58cf0>
60.211114 001efb40     bclr  -> 00271764
60.211115 00271850     bl  -> 001efb44 [intUnlock] <r1 = 00c58cf0>
60.211115 001efb58     bclr  -> 00271854
60.211115 00271854     bl  -> 0027d7f8 [windPwrDown] <r1 = 00c58cf0>
60.211115 0027d824       bl  -> 001efb30 [intLock] <r1 = 00c58cd0>
60.211115 001efb40       bclr  -> 0027d828
60.211115 0027d82c       bl  -> 0027d1e4 [windTickWaitGet] <r1 = 00c58cd0>
60.211116 0027d220         bcctrl  -> 0025dbf0 [qPriDeltaKey] <r1 = 00c58cc0>
60.211116 0025dc14         bclr  -> 0027d224
60.211116 0027d234       bclr  -> 0027d830
60.211116 0027d868       bl  -> 001efb44 [intUnlock] <r1 = 00c58cd0>
60.211116 001efb58       bclr  -> 0027d86c
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Time Address Subroutine Call / Interrupt
60.211117 0027d878       bcctrl  -> 001f01e0 [vxPowerDown] <r1 = 00c58cd0>
60.211117 001f0218       bclr  -> 0027d87c
60.211117 0027d890     bclr  -> 00271858
60.211824 00271858     interrupt  -> 00000500
60.211824 00000508       bl  -> 001eeeec [intEnt] <r1 = 00c58cf0>
60.211827 001ef16c         bcctrl  -> 0027d894 [windPwrUp] <r1 = 00be6828>
60.211827 0027d8c0           bl  -> 001efb30 [intLock] <r1 = 00be6808>
60.211827 001efb40           bclr  -> 0027d8c4
60.211827 0027d928           bl  -> 001efb44 [intUnlock] <r1 = 00be6808>
60.211828 001efb58           bclr  -> 0027d92c
60.211828 0027d944         bclr  -> 001ef170
60.211828 001ef18c       bclr  -> 0000050c
60.211828 00000514       bl  -> 00010604 [sysAerPicIntHandler] <r1 = 00be6838>
60.211828 00010610         bl  -> 001fc464 [_savegpr_22_l] <r1 = 00be6808>
60.211828 001fc490         bclr  -> 00010614
60.211829 00010630         bl  -> 000105b0 [sysAerPicIntLevelSet] <r1 = 00be6808>
60.211829 000105bc           bl  -> 001fc47c [_savegpr_28_l] <r1 = 00be67e8>
60.211829 001fc490           bclr  -> 000105c0
60.211829 001fc43c         bclr  -> 00010634
60.211830 0001063c         bl  -> 001efb44 [intUnlock] <r1 = 00be6808>
60.211830 001efb58         bclr  -> 00010640
60.211830 000106a0         bcctrl  -> 000108f8 [sysClkInt] <r1 = 00be6808>
60.211830 00010938           bcctrl  -> 0001395c [usrClock] <r1 = 00be67f8>
60.211831 00013968             bl  -> 0027ab1c [tickAnnounce] <r1 = 00be67e8>
60.211831 0027abdc               bl  -> 0027c78c [windTickAnnounce] <r1 = 00be67d8>
60.211831 0027c798                 bl  -> 001fc46c [_savegpr_24_l] <r1 = 00be67a8>
60.211831 001fc490                 bclr  -> 0027c79c
60.211832 0027c82c                 bcctrl  -> 0025db88 [qPriDeltaGetExpired] <r1 = 00be67a8>
60.211833 0025dbd4                   bl  -> 0025bb6c [dllRemove] <r1 = 00be6798>
60.211833 0025bba4                   bclr  -> 0025dbd8
60.211833 0025dbec                 bclr  -> 0027c830
60.211834 0027c910                 bl  -> 001efdb4 [taskRtnValueSet] <r1 = 00be67a8>
60.211834 001efdb8                 bclr  -> 0027c914
60.211834 0027ca30                 bcctrl  -> 0025d738 [qPriBMapPut] <r1 = 00be67a8>
60.211835 0025bb5c                 bclr  -> 0027ca34
60.211835 0027ca44                 bcctrl  -> 0025db88 [qPriDeltaGetExpired] <r1 = 00be67a8>
60.211836 0025dbd4                   bl  -> 0025bb6c [dllRemove] <r1 = 00be6798>
60.211836 0025bba4                   bclr  -> 0025dbd8
60.211836 0025dbec                 bclr  -> 0027ca48
60.211836 0027c910                 bl  -> 001efdb4 [taskRtnValueSet] <r1 = 00be67a8>
60.211837 001efdb8                 bclr  -> 0027c914
60.211837 0027ca30                 bcctrl  -> 0025d738 [qPriBMapPut] <r1 = 00be67a8>
60.211838 0025bb5c                 bclr  -> 0027ca34
60.211838 0027ca44                 bcctrl  -> 0025db88 [qPriDeltaGetExpired] <r1 = 00be67a8>
60.211838 0025dbec                 bclr  -> 0027ca48
60.211839 0027cb6c                 bcctrl  -> 0026ed08 [kernelRoundRobinHook] <r1 = 00be67a8>
60.211840 0026ee14                   bcctrl  -> 0025d850 [qPriBMapRemove] <r1 = 00be6798>
60.211840 0025d880                     bl  -> 0025bb6c [dllRemove] <r1 = 00be6788>
60.211840 0025bb9c                     bclr  -> 0025d884
60.211840 0025d8a0                     bl  -> 0025d7a8 [qPriBMapClear] <r1 = 00be6788>
60.211841 0025d7e8                     bclr  -> 0025d8a4
60.211841 0025d908                   bclr  -> 0026ee18
60.211841 0026ee30                   bcctrl  -> 0025d738 [qPriBMapPut] <r1 = 00be6798>
60.211842 0025bb5c                   bclr  -> 0026ee34
60.211842 0026ee48                 bclr  -> 0027cb70
60.211843 001fc41c               bclr  -> 0027abe0
60.211843 0027abe0               bl  -> 002616a0 [windExit] <r1 = 00be67d8>
60.211843 002616cc                 bl  -> 0026152c [emptyWorkQueue] <r1 = 00be67b8>
60.211844 0026169c                 bclr  -> 002616d0
60.211844 002616f8               bclr  -> 0027abe4
60.211844 0027abf4             bclr  -> 0001396c
60.211844 00013978           bclr  -> 0001093c
60.211844 00010948         bclr  -> 000106a4
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Time Address Subroutine Call / Interrupt
60.211844 000106ac         bl  -> 001efb30 [intLock] <r1 = 00be6808>
60.211844 001efb40         bclr  -> 000106b0
60.211845 001fc41c       bclr  -> 00000518
60.211845 0000051c       bl  -> 001ef2fc [intExit] <r1 = 00be6848>
60.211847 002716e4         bl  -> 001fc460 [_savegpr_21_l] <r1 = 00c58ce0>
60.211847 001fc490         bclr  -> 002716e8
60.211847 0027175c         bl  -> 0027d9c8 [workQDoWork] <r1 = 00c58ce0>
60.211848 0027d9d4           bl  -> 001fc474 [_savegpr_26_l] <r1 = 00c58cc0>
60.211848 001fc490           bclr  -> 0027d9d8
60.211848 0027d9d8           bl  -> 0023fbd8 [__errno] <r1 = 00c58cc0>
60.211848 0023fbe0           bclr  -> 0027d9dc
60.211848 0027da54           bl  -> 0023fbd8 [__errno] <r1 = 00c58cc0>
60.211848 0023fbe0           bclr  -> 0027da58
60.211848 001fc41c         bclr  -> 00271760
60.211849 00271760         bl  -> 001efb30 [intLock] <r1 = 00c58ce0>
60.211849 001efb40         bclr  -> 00271764
60.211849 00271888         bl  -> 001efb44 [intUnlock] <r1 = 00c58ce0>
60.211849 001efb58         bclr  -> 0027188c
60.211850 00271958         bcctrl  -> 00246e98 [taskVarSwitchHook] <r1 = 00c58ce0>
60.211850 00246ec4           bl  -> 001f5684 [objVerify] <r1 = 00c58cc0>
60.211850 001f56a8           bclr  -> 00246ec8
60.211851 00246fcc         bclr  -> 0027195c
60.211851 00271978         bl  -> 001efb30 [intLock] <r1 = 00c58ce0>
60.211851 001efb40         bclr  -> 0027197c
60.211851 00271ad4         bl  -> 001fc344 [_restgpr_21] <r1 = 00c58ce0>
60.211852 001fc370         bclr  -> 00271ad8
60.211854 00261a50     interrupt return  -> 0027867c
60.211854 002786b8   bclr  -> 001ec124

Other reports may be generated to aid in both project-level, and SMA analysis activities.  For example:
• The Software Interrupt report is used to compute the percent of reserve processing time available.  
• The Software Execution Marker report provides a look at where the processing time is spent.  This is

done by counting the number of times that individual instructions are executed over a set period of time.
This, in effect, forms a histogram of where processing time is spent during program execution. 

Access to timing information, memory & register data, interrupt events, actuator & sensor data, and SW parameters,
supports the recording of data for creating many other metric reports.  

4.4 Discussion

Unfortunately,  funding for the Mini-AERCam spacecraft  development was  discontinued in December  2005 and
consequently, development MAC FSW was not completed.  Our investigation was conducted with a software build
we received early November, 2005 identified as:  Aercam3_V3.14.  This build did not incorporate the Safe Mode
software and while the FIRE algorithm was included, it was not running in the simulator during our failure mode
testing effort.  As such, the results of our failure mode tests do not necessarily represent the behavior of of the MAC
under the control of a flight-worthy build of the software.  

That said, the failure mode testing we conducted elicited attitudinal and translational control behavior that would
have been masked by activation of Safe Mode.  For example, determination that the MAC is unable to maintain roll
control in the presence of certain thruster  failures while it is able to maintain effective  pitch and yaw stability
regardless of which thruster is failed.  This may lead to changes in the Safe Mode design that could improve the
ability to recover the MAC should a thruster failure occur.  This is illustrative of the value of failure mode testing at
least prior to the integration of the Safe Mode function, and perhaps at earlier stages of the spacecraft development
as well.  
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Since Safe  Mode is  designed  to control  the MAC in  the  event  of  a  system  failure,  its behavior  can  also be
empirically  evaluated  through  failure  mode  testing.   Verification  of  the  final  FSW  configuration  can  be
independently made by the SMA team through failure testing in the VSIL.  This may confirm that:

a) failures are detected and reported as required,
b) transition in and out of Safe Mode occurs as specified, and
c) Safe Mode operates as intended.

Failure mode mitigation strategies may also be  evaluated in this environment – particularly those implemented
through software control.  Modified flight software may be loaded into the VSIL and evaluated empirically using
failure mode tests previously developed.  

Evaluating operator-in-the-loop (OITL) mitigation strategies using the MAC VSIL would require greater execution
speeds than those we obtained while running the FSW object code.  At real-time execution speeds, OITL mitigation
procedures  could  be  verified  in  the  VSIL  and  evaluated  for  their  effectiveness.   We  have  identified  several
promising avenues through which we could speed up execution of the simulator from the present 16% real-time (on
an AMD 3700+ Athlon 64 PC) to the 100% real-time necessary for meaningful OITL operation.  

5.0 IMPLICATIONS

The results presented in this report establish the potential value that failure mode testing can add to FMEA and
consequently, to safety and mission assurance.  No longer need strategies for  the mitigation of failure modes be
developed solely on the basis of system design and control model analysis.  Instead, SMA analysts can set up failure
modes of interest within a VSIL, evaluate the behavior of the system and software in response to the failures, and
develop  mitigation  procedures  based  on  empirical results.   This is a  significant step  beyond  what  is typically
produced by analysis alone.  

Failure mode testing is useful not only as an adjunct to FMEA, but it is also as a tool that allows SQA to confirm
that the system (including the software) has correctly implemented the behavior specified in the requirements.  With
the combined benefits of failure mode testing in support of FMEA, and independent verification of requirements
through testing, SMA teams can significantly increase their effectiveness through the use of a VSIL.  

6.0 FUTURE WORK

Meeting the objectives  set  forth for this investigation has prepared the way for use of a VSIL for failure mode
testing on an active NASA project.  Since funding for the Mini-AERCam was discontinued at the end of 2005, we
have proposed to apply the results of  this effort to the Crew Exploration Vehicle (CEV) avionics development
project.  

At the time of this writing, NASA has recently selected a vendor to develop the CEV and related launch vehicle
components.  This is an ideal time to develop a VSIL for the following reasons:

a) System requirements  are  available  along with  essential  system design  documentation  from which  the
system-level VSIL can be created.

b) Failure modes can be simulated in support of testing the system design.

c) Tests created for evaluating the system design may be reused in the VSIL to verify that the flight software
has correctly implemented the requirements.  

Establishing a VSIL simulator early in the development of  the CEV will ensure that the SMA team is actively
involved through testing the system and software from the very beginning of the development effort.  Early and
increased involvement by the SMA team gives more time for them for a detailed assessment of the design at it is
created and evolves.   
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